Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AH^2=AC^2-HC^2=20^2-16^2=144\)
hay AH=12(cm)
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AB^2=9^2+12^2=225\)
hay AB=15(cm)
Vậy: AB=15cm; AH=12cm
Vì AH⊥BC => △ABH và △ACH vuông tại H Áp dụng định lý Pi-ta-go vào △ABH và △ACH, ta có:
AC2=AH2+CH2
=>AH2=AC2-CH2
AH2=202- 162
AH2= 144 => AH= căn bậc hai của 144= 12 (cm)
AB2=AH2+BH2
AB2= 122+92
AB2= 144+81
AB2= 225 => AB= căn bậc hai của 225 =15 (cm)
Vậy AB = 15 cm, AH = 12 cm