Xét (O) có
\(\widehat{EAB}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)
\(\widehat{BCE}\) là góc nội tiếp chắn \(\stackrel\frown{BE}\)
Do đó: \(\widehat{EAB}=\widehat{BCE}\)(Hệ quả góc nội tiếp)
hay \(\widehat{DAB}=\widehat{DCE}\)
Xét ΔDAB vuông tại D và ΔDCE vuông tại D có
\(\widehat{DAB}=\widehat{DCE}\)(cmt)
Do đó: ΔDAB\(\sim\)ΔDCE(g-g)
Suy ra: \(\dfrac{DA}{DC}=\dfrac{DB}{DE}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow DA\cdot DE=DB\cdot DC\)(đpcm)