Ôn tập Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
chan

Cho tam giác nhọn ABC nội tiếp đường tròn O. Gọi M N, lần lượt là trung điểm của các
cạnh BC và AC. Đường thẳng MN cắt cung nhỏ BC của đường tròn O tại P.
a) Chứng minh rằng tứ giác OMCN nội tiếp.
b) Gọi D là điểm bất kỳ trên AB D A D B    , . Đường tròn ngoại tiếp tam giác BPD cắt cạnh BC tại điểm
I khác B K; là giao điểm của hai đường thẳng DI và AC. Chứng minh rằng PK PB PC PD    .
c) Gọi G là giao điểm khác P của AP với đường tròn ngoại tiếp tam giác BPD, đường thẳng IG cắt AB tại
E. Chứng minh rằng D di chuyển trên cạnh AB thì tỉ số AD

AE không đổi.

Nguyễn Lê Phước Thịnh
7 tháng 4 2023 lúc 14:53

a: ΔOBC cân tại O

mà OM là trung tuyến

nên OM vuông góc BC

ΔOAC cân tại O

mà ON là trung tuyến

nên ON vuông góc AC

Vì góc OMC+góc ONC=180 độ

nên OMCN nội tiếp


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hãy Đội quần
Xem chi tiết
Huy Tiến
Xem chi tiết
dhuong
Xem chi tiết
lục thiển
Xem chi tiết
Đức Phạm
Xem chi tiết
Nguyên anh
Xem chi tiết
Linh Nguyễn
Xem chi tiết