a: Xét ΔADE có AD=AE
nên ΔADE cân tại A
mà \(\widehat{DAE}=60^0\)
nên ΔADE đều
b: Xét ΔDEC có DE=DC
nên ΔDEC cân tại D
c: Xét ΔAEC có
ED là đường trung tuyến
ED=AC/2
Do đó: ΔAEC vuông tại E
hay CE\(\perp\)AB
a: Xét ΔADE có AD=AE
nên ΔADE cân tại A
mà \(\widehat{DAE}=60^0\)
nên ΔADE đều
b: Xét ΔDEC có DE=DC
nên ΔDEC cân tại D
c: Xét ΔAEC có
ED là đường trung tuyến
ED=AC/2
Do đó: ΔAEC vuông tại E
hay CE\(\perp\)AB
cho tam giác nhọn abc (AB < AC) có góc A = 60 độ. D là trung điểm của cạnh AC. Trên tia AB lấy điểm E sao cho AE = AD. Chứng minh rằng:
a, Tam giác ADE là tam giác đều
b, Tam giác DEC là tam giác cân
c, CE vuông góc với AB
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a.chứng minh tg MDB=tg NEC
b.gọi I là giao điểm của MN và BC,chứng minh: I là trung điểm của MN
c.Kẻ AH là đường phân giác của góc BAC;đường thẳng kẻ qua I vuông góc với MN cắt AH tại K chứng minh NCK=MBK
Cho tam giác ABC có ba góc đều nhọn, AB < AC. AH là đường cao Trên AH lấy điểm K sao cho H là trung điểm của AK. a) Gọi E là trung điểm của BC. Trên tia AE lấy điểm D sao cho E là trung điểm của AD. Chứng minh rằng BD = AC = CK b) Chứng minh EH là phân giác của góc AEK và DK // BC c) Gọi I là giao điểm của BD và CK, N là trung điểm của KD. Chứng minh ba điểm E, I, N thẳng hàng.
Cho tam giác ABC có 3 góc nhọn (AB < AC). Trên cạnh AC lấy điểm M sao cho AB = AM. Gọi AD là tia phân giác của (D thuộc BC).
a) Chứng minh: .
b) Chứng minh rằng: góc DBA = góc DMA.
c) Từ D kẻ DI vuông góc với AB, DK vuông góc với AC (I thuộc AB, K thuộc AC). Chứng minh: BI = KM.
d) Trên tia đối của tia AB lấy điểm P sao cho A là trung điểm PI. Chứng minh: AD//PK. giúp mik với mik cần gấp
Cho ∆ABC vuông tại A có AB= 4cm, AC= 3 cm. a. Tính BC b. Trên cạnh AC lấy điểm E sao cho AE= 1cm, trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chứng minh rằng ∆BEC= ∆DEC. Chứng minh rằng DE đi qua trung điểm của cạnh BC
Cho tam giác nhọn ABC ( AB < AC ) có góc A=60 độ.D là trung điểm cạnh AC.Trên tia AB lấy điểm E sao cho AE=AD
CMR: a) Tam giác ADE đều
b) Tam giác DEC cân
c) CE vuông AB
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc A cắt BC tại D qua D kẻ đường thẳng vuông góc với BC cắt AC tại E trên AB lấy điểm F sao cho AF=AE chứng minh:
a) Góc B= góc DEC
b) Tam giác DBE là tam giác cân
c)Chứng minh DB=DE
Cho tam giác nhọn ABC có AB>ACm đường cao AD. Trên đoạn DC lấy điểm E sao cho DB=DE. a) Chứng minh tam giác ABE cân b) Từ E kẻ EF vuông góc với AC(F thuộc AC). Từ C kẻ CK vuông góc với AE(K thuộc AE). Chứng minh ba đường thẳng AD, EF và CK đồng quy.