cho tam giác ABC đều, cạnh bằng 1. phát biểu nào đúng ? ( giải thích dùm mình)
a> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=\sqrt{3}\)
b> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=0\)
c> \(\left|\overrightarrow{AB}-\overrightarrow{CA}\right|=2\)
d> \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=0\)
Cho tam giác ABC đều cạnh a. Tính \(\left|2\overrightarrow{AB}+3\overrightarrow{AC}\right|\)
Cho tam giác ABC có M, N lần lượt là trung điểm của AB và AC, điểm K nằm trên đoạn MN sao cho \(\overrightarrow{KM}=-2\overrightarrow{KN}\). Tính \(\overrightarrow{AK}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, BC, CD. CMR:
a. \(\overrightarrow{AM}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AC}\)
b. \(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{AP}+\overrightarrow{BM}=\overrightarrow{MC}\)
c.\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
d. \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP},\forall0\)
Cho ba điểm A,B,C. Mệnh đề nào sau đây đúng?
A. AB+BC=AC
B. \(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=0\)
C. \(\overrightarrow{AB}-\overrightarrow{BC}\Leftrightarrow\left|\overrightarrow{CA}\right|-\left|\overrightarrow{BC}\right|\)
D. \(\overrightarrow{AB}-\overrightarrow{CA}=\overrightarrow{BC}\)
câu 1: cho tứ giác ABCD. Gọi O là trung điểm của AB.
Chứng minh rằng: \(\overrightarrow{OD}+\overrightarrow{OC}=\overrightarrow{AD}+\overrightarrow{BC}\)
Câu 2: Cho tam giác ABC. Gọi A' là điểm đối xứng của B qua A, B' là điểm dối xứng của C qua B, C' là điểm đối xứng của A qua C. Với một điểm O bất kì, chứng minh rằng:
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)
Giúp em vớiii
Chỉ ra vectơ tổng trong các vectơ \(\overrightarrow{AB}-\overrightarrow{AC}-\overrightarrow{CD}-\overrightarrow{DE}-\overrightarrow{EF}-\overrightarrow{FG}\)
Cho tam giác ABC, Gọi M, N, P lần lượt là trung điểm của AB, BC, CA. Chứng minh rằng :
a, \(\overrightarrow{\text{Ạ}N}=\overrightarrow{AM}+\overrightarrow{AP}\)
b, \(\overrightarrow{AN}+\overrightarrow{BP}+\overrightarrow{CM}=\overrightarrow{0}\)
Cho tam giác ABC vuông tại A có AB=3, AC=4. Tính \(\left|\overrightarrow{CA}+\overrightarrow{AB}\right|\)