Cho tam giác ABC vuông tại A có đường cao AH, trên cạnh BC lấy 2 điểm E, F sao cho CE=CA; BF=AB. Gọi I, K, L lần lượt là tâm đường tròn nội tiếp các tam giác ABC, ABH, ACH và M là giao điểm BI với AC. Chứng minh
a) IE=IF.
b) Giả sử AB=3, AC=4. TÌm khoảng cách từ I,K,L tới BC
Câu hỏi : cho (O;R) từ điểm A ngoài đường tròn sao cho OA=2R. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm) A) Tam giác ABC là tam giác vuông ? Vì sao? B) chứng minh OH×OA=R^2 C) qua A kẻ đường thẳng cắt đường tròn lần lượt tại M và N(M nằm giữa A và N), xác định vị trí của AMN để AM+AN đạt giá trị nhỏ nhất. Cảm ơn rất nhiều
Lớp9: Đường tròn
C1: cho O và A là điểm nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB,AC vs đường tròn ( B,C là tiếp điểm ) a,chứng minh OA VUÔNG BC .
b, vẽ đg kính CD chứng minh BD // AO
C, tính độ dài các cạnh của tam giác ABC BIÉT OB=2cm: OC=4cm
Cho tam giác ABC vuông cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm. a/ Tính các góc và các cạnh còn lại của tam giác ABC. b/ Dựng đường tròn tâm (O) ngoại tiếp tam giác ABC, tính độ dài bán kính của đường tròn tâm O.
Cho đường tròn (O) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại H, I, K. Vẽ HD vuông góc IK. Chứng minh góc ABD = góc ACD.
Cho tam giác ABC vuông tại A nội tiếp đường tròn (O;R) có đường kính BC và cạnh AB=R. Kẻ dây AD vuông góc với BC tại H
a) Tính độ dài các cạnh AC,AH và số đo góc B, góc C
b) Chứng minh: AH.HD=HB.HC
c) Gọi M là giao điểm của AC và BD. Qua M kẻ đường thẳng vuông góc với BC cắt BC ở I, căt AC ở N. Chứng minh: C,D,N thẳng hàng
d) Chứng minh: AI là tiếp tuyến của đường tròn (O) và tính AI theo R
(Vẽ hình bài 1 và làm bài 2)
Bài 1: Cho đường tròn (O, 5cm), điểm M nằm bên ngoài đường tròn. Kẻ các đường tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Biết AMB = 60 độ
a) Chứng minh tam giác AMB là tam giác đều.
b) Tính chu vi tam giác AMB.
c) Tia AO cắt đường tròn ở C. Tứ giác BMOC là hình gì? Vì sao?
Bài 2: Cho nửa đường tròn (O, R), đường kính AB, hai tiếp tuyến Ax, By trên cùng một nửa mặt phẳng bờ AB. Trên tia Ax lấy điểm C, qua O kẻ đường thẳng vuông góc với OC cắt By ở D.
a) Tứ giác ABDC là hình gì? Vì sao?
b) C/m rằng đường tròn ngoại tiếp tam giác COD tiếp xúc với đường thẳng AB tại O.
c) Chứng minh CA.DB = R2
Cho đường tròn (O) và 1 điểm A nằm ngoài đường tròn (O). Qua điểm A vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B, C là các tiếp điểm). AO cắt BC tại D
a/ Chứng minh tam giác ABC cân tại A và AO là đường trung trực của BC
b/ Vẽ đường kính BE, AE cắt đường tròn (O) tại F. Gọi G là trung điểm của EF, đường thẳng OG cắt đường thẳng BC tại H. Chứng minh tam giác AGO đồng dạng tam giác HDO
c/ Chứng minh EH là tiếp tuyến của đường tròn (O)
Bài 7. (3 điểm) Cho hai đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Tiếp tuyến chung ngoài MN cắt tiếp tuyến chung trong tại K (M, N là 2 tiếp điểm; M ∈ (O) và N ∈ (O')). a) Chứng minh AK = MK và △AMN là tam giác vuông. b) MA cắt (O') tại B, NA cắt (O) tại C. Chứng minh SAMN = SABC. c) Chứng minh BK và ON cắt nhau tại một điểm nằm trên (O').