Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O) có AD, BE là hai đường cao cắt nhau tại H, vẽ đường kính AK của đường tròn (O), kẻ BF⊥AK (F∈AK).
a) Chúng minh 5 điểm A,B,C,D,E,F cùng thuộc một đường tròn, xác định tâm I của đường tròn này.
b) Gọi M là trung điểm của BC. Chứng 3 điểm H,M,K thẳng hàng.
c)Chứng minh IM là đường trung trực của DF
Cho nửa đường tròn tâm O, đường kính AB. Điểm H cố định thuộc đoạn thẳng AO ( H khác A và O), trên cung BC lấy điểm D bất kì ( D khác B và C). Đường thẳng đi qua H và vuông góc với AO cắt nữa đường tròn tại C. Gọi giao điểm của tiếp với nữa đường tròn kẻ từ D với HC là E, giao điểm của AD với HC là I.
a) Chứng minh tứ giác HBDI nội tiếp được
b) Chứng minh tam giác DEI là tam giác cân
Cho tam giác ABC vuông tại A nội tiếp đường tròn tâm O. Kẻ đường cao AH. Đường tròn (I) đường kính AH cắt AB,AC và đường tròn (O) lần lượt ở D,E,F. AF cắt đường thẳng BC tại S. Chứng minh:
a) Tứ giác ADHE là hình chữ nhật
b) Tứ giác BDEC nội tiếp được đường tròn
c) Chứng minh OA\(\perp\)DE và 3 điểm S,D,E thẳng hàng
Làm hộ mình phần b,c với ạ
Cho đường tròn (O) và điểm P nằm ngoài đường tròn. Từ B vẽ hai tiếp tuyến PA và PB với (O) (A,B là hai tiếp điểm). PO cắt (O) tại K và I (K nằm giữa P và O) và cắt AB tại H. Gọi D là điểm đối xứng của B qua O,C là giao điểm của PD và (O).
a) Chứng minh tứ giác BHCP nội tiếp
b) Chứng minh AC\(\perp\)CH
c) Đường tròn ngoại tiếp \(\Delta\)ACH cắt IC tại M, AM cắt IB tại Q, BM cắt HQ tại G. Chứng minh rằng đường thẳng AG đi qua trung điểm của BQ
Cho ΔABC nội tiếp đường tròn (O). Vẽ hai đường cao BB' và CC'.
a) Chứng minh tứ giác BC'B'C nội tiếp. Xác định tâm và bán kính của đường tròn ngoại tiếp tứ giác
B) Vẽ tiếp tuyến AAx tại A với đường tròn (O). Chứng minh Ax//C'B'
Cho tam giác ABC có 3 góc nhọc (AB<AC) nội tiếp đường tròn tâm O. Kẻ đường cao AD và đường kính AA'. Gọi E,F theo thứ tự là chân đường vuông góc từ B và C xuống đường kính AA'
a) Chứng minh AEDB nội tiếp
b) Chứng minh DB.A'A=AD.AC
c) Chứng minh DE\(\perp\)AC
Giúp mình phần b,c với ạ
cho đường tròn (O) và điểm A bên ngoài đường tròn , từ A vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm ) . Kẻ đ.kính BC của đường tròn (O) . AC cắt đường tròn (O) tại D ( D khác C)
a) CM BD vuông góc AC và \(AB^2\) |= AD . AC
b) từ C vẽ dây CE // OA . BE cắt OA tại H . CM H là trung điểm BE và AE là tiếp tuyến của đường tròn (O)
c) Tia OA cắt đường tròn (O) tại F . CM FA .CH = HF . CA
Cho tam giác ABC vuông tại A nội tiếp đường tròn tâm O. Kẻ đường cao AH. Đường tròn (I) đường kính AH cắt AB,AC và đường tròn (O) lần lượt ở D,E,F. AF cắt đường thẳng BC tại S. Chứng minh:
a) Tứ giác ADHE là hình chữ nhật
b) Tứ giác BDEC nội tiếp được đường tròn
c) Chứng minh OA⊥⊥DE và 3 điểm S,D,E thẳng hàng
Làm hộ mình phần b,c với ạ
Từ điểm A nằm ngoài đường tròn (O) vẽ tiếp tuyến AB, AC và cát tuyến ADE đến đường tròn (O).
a) CM : AB\(^2\) = AD.AE
b) Gọi H là giao điểm của OA và BC. CM : tứ giác DEOH nội tiếp
c) CM : HB là phân giác của góc EHD
d) Qua D vẽ đường thẳng song song EB cắt BC tại F và cắt AB tại Q. CM : D là trung điểm PQ