a: Ta có: ΔDAE cân tại D
mà DB là đường phân giác
nên DB là đường cao
a: Ta có: ΔDAE cân tại D
mà DB là đường phân giác
nên DB là đường cao
Cho ∆ ABC cân tại A. Gọi K là trung điểm của AC, D là trung điểm của BC.
Chứng minh tứ giác ABDK là hình thang.
b.Gọi M là điểm đối xứng của D qua K. Chứng minh tứ giác AMCD là hình chữ nhật.
c.Từ D vẽ DE ⊥ AC tại E. Gọi G và H lần lượt là trung điểm của DE và EC.
Chứng minh AG ⊥ BE.
GIẢI CÂU C THÔI Ạ
Cho \(\Delta\)ABC cân tại A,đường cao AH.Gọi M là trung điểm của AB,E là điểm đối xứng với H qua M.
a)Chứng minh tứ giác AHBE là hình chữ nhật
b)Gọi F đối xứng A qua BC.Chứng minh tứ giác ABFC là hình thoi
c)Gọi K là giao điểm của FM và BC.Chứng minh 4HK=CK
Bài 1: Cho hình bình hành ABCD có O là giao điểm của hai đường chéo. Kẻ AH ^ DB tại H ,CK ^ DB tại K . a) Chứng minh AHCK là hình bình hành. b) Chứng minh H đối xứng với K qua O .
Cho tam giác ABC vuông tại A. Gọi D,E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh rằng:
a. DE//AC, DF//AB.
b. Tứ giác AEDF là hình chữ nhật.
c. Gọi M và N lần lượt là các điểm đối xứng với D qua AB và AC. Chứng minh M đối xúng với N qua A.
Giúp em với ạ
Bài 2: Cho ABC cân tại A có H là trung điểm BC.
a) Chứng minh AH ⊥ BC tại H.
b) Gọi I là trung điểm AB và D là điểm đối xứng của H qua I. Chứng minh tứ giác BDAH là hình chữ nhật.
c) Gọi K là trung điểm AC và E là điểm đối xứng của H qua K. Chứng minh AECH là hình chữ nhật. Suy ra
ba điểm D, A, E thẳng hàng.
d) Chứng minh D đối xứng với E qua A
Bài 7. Cho cân tại A, AM là đường cao. Gọi N là trung điểm của AC. D là điểm đối xứng của M qua N.
a) CMR: Tứ giác ADCM là hình chữ nhật.
b) CMR: Tứ giác ABMD là hình bình hành và BD đi qua trung điểm O của AM.
c) BD cắt AC tại I. CMR: DI=2/3OB
Giúp mik với
1. Cho tam giác ABC , đường cao AH . Gọi I là trung điểm của AC . Lấy D là điểm đối xứng với
H qua I . Chứng minh tứ giác AHCD là hình chữ nhật.
2. Cho tam giác ABC vuông tại A, đường cao AH . Gọi I , K theo thứ tự là trung điểm của AB ,
AC . Chứng minh:
a) IHK � 90� � ; b) Chu vi �IHK bằng nửa chu vi �ABC .
3. Tìm x trong hình vẽ bên, Biết AB �13 cm, BC �15 cm, AD �10
cm.
4. Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E , F , G , H theo thứ tự là
trung điểm của các cạnh AB , BC , CD, DA . Chứng minh tứ giác HEFG là hình chữ nhật.
5. Cho hình thang cân ABCD ( AB CD � , AB CD � ). Gọi M , N , P , Q lần lượt là trung điểm
các đoạn thẳng AD , BD , AC , BC .
a) Chứng minh bốn điểm M , N , P , Q thẳng hàng;
b) Chứng minh tứ giác ABPN là hình thang cân;
c) Tìm một hệ thức liên hệ giữa AB và CD để ABPN là hình chữ nhật.
6. Cho tam giác ABC có đường cao AI . Từ A kẻ tia Ax vuông góc với AC , từ B kẻ tia By
song song với AC . Gọi M là giao điểm của tia Ax và tia By . Nối M với trung điểm P của AB ,
đường MP cắt AC tại Q và BQ cắt AI tại H .
a) Tứ giác AMBQ là hình gì? b) Chứng minh tam giác PIQ cân.
7. Cho tam giác ABC . Gọi O là một điểm thuộc miền trong của tam giác. M ,
N , P , Q lần lượt là trung điểm của các đoạn thẳng OB , OC , AC , AB .
a) Chứng minh tứ giác MNPQ là hình bình hành;
b) Xác định vị trí của điểm O để tứ giác MNPQ là hình chữ nhật.