a) Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC(ΔBAC cân tại A)
AM chung
Do đó: ΔABM=ΔACM(Cạnh huyền-cạnh góc vuông)
Suy ra: BM=CM(hai cạnh tương ứng)
mà BM+CM=BC(M nằm giữa B và C)
nên \(BM=CM=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+BM^2\)
\(\Leftrightarrow AM^2=AB^2-BM^2=5^2-3^2=16\)
hay AM=4(cm)
Vậy: AM=4cm