a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BMNC là hình thang cân
Bài 1: Cho tam giác cân ABC (AB = AC). Gọi M, N, P theo thứ tự là trung điểm củaAB, AC, BC. Cho Q là điểm đối xứng của P qua N. Chứng minh :
a. BMNC là hình thang cân.
b. PMAQ là hình thang.
c. ABPQ là hình bình hành
d. APCQ là hình chữ nhật
Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 1. Cho tam giác ABC có ba góc nhọn (AB<AC), đường cao AH. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC ; MN cắt AH tại I.
a) Chứng minh I là trung điểm của AH.
b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN.
d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng.
Bài 2: Cho hình chữ nhật MNPQ. Gọi A là chân đường vuông góc hạ từ P đến NQ. Gọi B;C; D lần lượt là trung điểm của PA; AQ; MN.
a) Chứng minh rằng: BC//MN
b) Chứng minh rằng tứ giác CDNB là hình bình hành
c) Gọi E là giao điểm của NB và PC, gọi F là chân đường vuông góc hạ từ D đến NB. Chứng minh rằng tứ giác FDCE là hình chữ nhật
d) Hạ CG vuông góc với MN tại G; BC cắt NP tại H, chứng minh rằng DB cắt GH tại trung điểm mỗi đường.
Bài 3: Cho hình bình hành ABCD có AB = 8 cm, AD = 4 cm.Gọi M, N lần lượt là trung điểm của AB và CD.
a. Chứng minh tứ giác AMCN là hình bình hành. Hỏi tứ giác AMND là hình gì?
b. Gọi I là giao điểm của AN và DM , K là giao điểm của BN và CM . Tứ giác MINK là hình gì?
c. Chứng minh IK // CD
ho tam giác ABC có ba góc nhọn (AB < AC), đường cao AH. Gọi M, N, P là trung điểm của các cạnh AB, AC, BC, MN cắt AC tại I. a) Chứng minh I là trung điểm của AH b) Lấy điểm Q đối xứng với P qua N. Chứng minh tứ giác ABPQ là hình bình hành. c) Xác định dạng của tứ giác MHPN d) Gọi K là trung điểm của MN, O là giao điểm của CK và QP, F là giao điểm của MN và QC. Chứng minh B, O, F thẳng hàng
Cho tam giác ABC cân tại A . Gọi D, E, F lần lượt là trung điểm của AB, AC , và BC
a) Chứng minh tứ giác DECF là hình bình hành.
b) Gọi K là điểm đối xứng của F qua E . Chứng minh tứ giác AKCF là hình chữ nhật.
c) Gọi H là điểm đối xứng của A qua K . Vẽ AI vuông góc CH tại I . Tính số đo KIF .
Cho ΔABC cân tại A. Kẻ phân giác trong AM (M ∈ BC). Gọi I là trung điểm của AC và K là điểm đối xứng của M qua I.
a)Chứng minh tứgiác AMCK là hình chữ nhật.
b)Tính diện tích tam giác ABC, biết AB = 5cm; BC = 6cm.
c)Để tứ giác AMCK là hình vuông thì tam giác ABC phải có them điều kiện gì?
cho em hình nữa nhé .-.
Câu 16. (3,0 điểm) Cho tam giác ABC cân tại A, đường cao AM. Gọi I là trung điểm AC, K là điểm đối xứng với M qua I.
a) Chứng minh: Tứ giác MAKC là hình chữ nhật
b) Tìm điều kiện của tam giác ABC để tứ giác MAKC là hình vuông
c)Cho AB=5,BC=6 Tính diện tích hình chữ nhật MAKC
giúp mik với ạ
cho tam giác ABC cân tại A.Gọi D,E,F lần lượt là trung điểm của AB,AC,BC 1>lấy K đối xứng với F qua D , chứng minh AFBK À hình chữ nhật 2>Gọi O là dao điểm của EK và AD , H là gia điểm của DF và BE . Chứng minh 1>tứ giác AKDE là hình bình hành 2>HO vuông góc DE