Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô bé áo xanh

Cho tam giác cân ABC, AB = AC. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC thứ tự tại M và N .Chứng minh:
a) DM=EN
b) BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC.

Louise Francoise
15 tháng 1 2018 lúc 22:24

A B C M D N E I K 2 3 1 o 1 1 2 1 I

a) Vì AB = AC (gt) nên \(\Delta\) ABC cân tại A

Ta có: \(\widehat{C_1}\) = \(\widehat{C_2}\) (2 góc đối đỉnh)

\(\widehat{B}\) = \(\widehat{C_1}\) (vì ABC cân tại A) \(\Rightarrow\) \(\widehat{B}\) = \(\widehat{C_2}\)

Xét \(\Delta\) BDM và \(\Delta\) CEN, có:

\(\widehat{B}\) = \(\widehat{C_2}\) (cmt)

CE = BD (gt)

\(\Rightarrow\) \(\Delta\) BDM = \(\Delta\) CEN (cạnh góc vuông - góc nhọn)

\(\Rightarrow\) DM = EN (2 cạnh tương ứng)

(Mai mình sẽ làm tiếp, sorry vì kẻ thừa MK nha)

Công chúa ánh dương
15 tháng 1 2018 lúc 21:35

BCAEMNID

a) Xét hai ΔΔDMBΔΔENC có:

MDBˆMDB^==NECˆNEC^==900900 (gt)

BD=CE (gt)

Ta có: BˆB^==ACBˆACB^ (vì ΔΔ ABC cân tại A)

ACBˆACB^==NCEˆNCE^ (vì 2 góc đối đỉnh)

BˆB^==NCEˆNCE^

ΔΔDMB=ΔΔENC (g.c.g)

DM=EN (hai cạnh tương ứng)

b) Ta có: MDBCNEBC

MD//NE

DMIˆDMI^==INEˆINE^ (hai góc so le trong)

Xét hai ΔΔIMDΔΔINE có:

DMIˆDMI^==INEˆINE^ (cmt)

DM==EN (đã cm ở câu a)

MDIˆMDI^==NEIˆNEI^==900900 (gt)

ΔΔIMD==​​ΔΔINE (g.c.g)

IM==IN

I là trung điểm của MN

dpcm

Xin lỗi nha,ý C mk ko làm đc bn tự giải nhé ngaingung


Các câu hỏi tương tự
Meopeow1029
Xem chi tiết
Nguyễn Trịnh Quang
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Thuận Minh GilenChi
Xem chi tiết
Hoàng Khánh Thư
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
bùi thị như quỳnh
Xem chi tiết
Như Ngọc
Xem chi tiết