ΔAMN = ΔDEK
ΔMNA =ΔEKD
ΔNAM = ΔKDE
ΔMAN = ΔEDK
ΔNMA = ΔKED
....
ΔAMN = ΔDEK
ΔMNA =ΔEKD
ΔNAM = ΔKDE
ΔMAN = ΔEDK
ΔNMA = ΔKED
....
Bài tập : Cho tam giác ABC = tam giác DMN
a. Viết đẳng thức trên dưới một vài dạng khác .
b. Cho AB = 3 cm , AC = 4 cm , MN = 6 cm .
Tính chu vi của mỗi tam giác nói trên ?
cho 2 tam giác bằng nhau tam giác ABC và 1 tam giác có 3 đỉnh M N P hãy viết kí hiệu về sự bằng nhau của 2 tam giác trên biết
a,A=N,B=M
b,AB=PN,BC=MN
Cho góc nhọn xOy. Trên tia Ox, Oy lấy tương ứng 2 điểm A và B sao cho OA=OB. Vẽ đường tròn tâm A và đường tròn tâm B có cùng bán kính sao cho chúng cắt nhau tại 2 điểm M và N nằm trong góc xOy. Cmr:
a, Tam giác OMA= Tam giác OMB
Tam giác ONA= Tam giác ONB
b, 3 điểm O,M,N thẳng hàng
c, Tam giác AMN= Tam giác BMN
d, MN là tia phân giác của góc AMB
help me!!! Mai mk hok rùi
Bài tập : Cho hai tam giác bằng nhau : tam giác ABC và một tam giác có ba đỉnh là D , E , F . Hãy viết các kí hiệu về sự bằng nhau của hai tam giác đó , biết rằng :
a. A = F , B = E
b. AB = ED , AC = FD
cho tam giác ABC và tam giác DEF biết B = F và AB = EF .
a) với điều kiện nào thì tam giác ABC và tam gáic DEF bằng nhau trường hợp c.g.c , viết kí hiệu về sự bằng nhau của hai tam giác đó.
b) Cho tam giác ABC và tam giác tam giác DEF bằng nhau như câu a . Tính chu vi của mỗi âtm giác biết AB = 5CM , ac = 6CM , DF = 6cm.
Cho tam giác ABC vuông tại A (AB<AC). Trên cạnh AC lấy điểm D sao cho AB = AD. Trên tia đối của AB lấy điểm E sao cho AC=AE.
a)CM:Tam giác ABC = TAM GIÁC ADE
b)Gọi m,n lần lượt là trung điểm của BC và DE. CM: AM=AN
c)Tính số góc đo AMN
cho góc xoy khác góc bẹt .trên tia ox lấy hai điểm A và B .trên tia oy lấy hai điểm C và D sao cho OA=OC,OB=OD.chứng minh rằng:a,Tam giác OAD=Tam giác OCB. b,Tam giác ACD=Tam giác CAB.
Cho tam giác nhọn ABC (AB<AC), điểm M là trung điểm BC. Kẻ tia Ax//BM, trên tia Ax lấy điểm D sao cho: AD=BM(M và D khác phía đối với AB). Gọi I là trung điểm của AB.
a, CM: tam giác AID= tam giác BIM.
b,CM: tam giác AIM= tam giác BID, AM//BD.
c, Đường trung trực của BC cắt AC tại E, tia BE cắt đường thẳng Ax tại F.CMR:BE=AC
d, Hai đường thẳng AB và FC cắt nhau ở O. CMR: O,E,M thẳng hàng.
Cho góc xOy khác góc bẹt. Trên tia Ox lấy 2 điểm A,C. Trên tia Oy lấy 2 điểm B,D sao cho OA = OB ; OC = OD . Gọi I là giao điểm của AD và BC. Chứng minh rằng :
a ) Tam giác OAD = Tam giác OBC
b ) Tam giác AIC = Tam giác BID
c) OI là tia phân giác của góc xOy
d ) OI vuông góc với CD