Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
b) CMR: \(DE^3=BC.BD.CE\)
c) Đường thẳng qua B vuông góc với BC cắt HD tại M; đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh: M, A, N thẳng hàng
d) CM: Ba đường thẳng BN, CM, DE đồng quy
Cho tam giác ABC vuông tại A (AB<AC). Kẻ đường cao AH của tam giác ABC. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) Biết AB=6cm và HC=6,4cm. Tính AC và BC.
cho đoạn thẳng AB , trên cùng một nửa mặt phẳng bờ AB vẽ nửa đường tròn đường kính AB và các tiếp tuyến Ax , By . Qua điểm M thuộc nửa đường tròn này ( M khác A, B) vẽ tiếp tuyến Ax , By theo thứ tự tại E và F , VẼ mh VUÔNG GÓC VỚI aB TẠI H . gọi N là giao điểm của các tia BM và Ax , gọi G là giao điểm thứ 2 của À với nửa đường tròn O . chứng minh NG là tiếp tuyến của đường tròn O
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
mọi người giải hộ em bài này với ạ
Cho tam giác MAB vuông tại M,MB<MA,kẻ MH vuông góc với AB (H thuộc AB).Đường tròn (O) đường kính MH cắt MA,MB lần lượt tại E và F (E,F khác M)
a) đường thẳng EF cắt đường tròn (O') ngoại tiếp tam giác MAB tại P và Q (P thuộc cung MB). Chứng minh tam giác MPQ cân
b)Gọi I là giao điểm thứ 2 của đường tròn (O) với (O') .Đường thẳng EF cắt đường thẳng AB tại K .Chứng minh M,I,K thẳng hàng
Cho tam giác MAB vuông tại M ( MA > MB), kẻ MH vuông góc với AB ( H thuộc AB ). Đường tròn tâm O đường kính MH cắt MA và MB lần lượt tại E và F ( E, F khác M)
1) Chứng minh tứ giác MEHF là hình chữ nhật.
2) Chứng minh tứ giác AEFB nội tiếp. ( chứng minh theo hai cách )
3) Đường thẳng EF cắt đường tròn (O') ngoại tiếp tam giác MAB tại P và Q ( P thuộc cung MB ). Chứng minh tam giác MPQ cân. ( chứng minh theo hai cách ).
4) Gọi I là giao điểm thứ hai của đường tròn (O) với đường tròn (O'). Đường thẳng EF cắt đường thẳng AB tại K. Chứng minh ba điểm M, I, K thẳng hàng.
Cho tam giác ABC vuuong cân tại đỉnh A. Gọi D là trung điểm của cạnh BC. Qua D dựng đường thẳng vuông góc với AB tại M. Lấy điểm N đối xứng với D qua M. Từ giao điểm P của AB và CN, hạ đoạn thẳng PQ vuông góc với BC tại Q. Các tia CP và QM cắt nhau tại E.
a) Chứng minh tứ giác MPDQ nội tiếp một đường tròn.
b) Chứng minh BE vuông góc với CN.
c) Chứng minh tia EC là tia phân giác của góc AEQ
Cho tam giác ABCvuông tại A, đường caoAH. Biết AB 3cm,AC 4cm
a) Tính AH
b) Gọi D,E lần lượt là hình chiếu của H trên AB và AC. Chứng minh tam giác AED và tam giác ABC đồng dạng