Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
cho tam giác ABC vuông tại A ,điểm M nằm trên AB, vẽ dt <O, BM bằng 2r> CM cắt đường tròn tại D, AD cắt đường tròn tại E Chứng minh
a, tứ giác ACBD nội tiếp rồi suy ra 2 góc ABD và ACD bằng nhau
b, BA là phân giác góc EBC
c, cho BC bằng 4cm góc ABC bằng 30 độ tính diện tích hình viên giới hạn cung nhỏ AC và dây AC
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn tâm O vẽ các đường cao AI,BM,CE cắt nhau tại H
a/chứng minh: tứ giác BEMC nội tiếp
b /xác định các tứ giác nội tiếp còn lại
c/ vẽ đường kính AK. Chứng minh: AB.AC=AI.AK
cho tam giác ABC nội tiếp đường tròn M thuộc BC, đường trung trực của BM,CM cắt AB, AC tại C' và B'. Gọi A' là điểm đối xứng của M là B"C'. chứng minh tứ giác AA'BC nội tiếp đường tròn
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM
Cho tam giác ABC nhọn nội tiếp đường tròn (O). M là điểm thuộc cung nhỏ AC. Vẽ MH vuông góc với BC tại H, vẽ MI vuông góc với AC. Chứng minh tứ giác MIHC nội tiếp.