a: DB/DC=AB/C=4/3
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
a: DB/DC=AB/C=4/3
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
cho tam giác abc vuông ở a, có ab=6cm, ac=8cm, vẽ đường cao ah
a, tính bc
b, cm tam giác abc đồng dạng tam giác ahb
c, cm ab^2=bh.bc. tính bh, hc
d, vẽ phân giác ad của góc a( d thuộc bc). tính db
Xin sự trợ giúp câu e ah,
Bài 2. Cho tam giác ABC vuông tại A ( AB < AC ), BD là phân giác của góc ABC ( D thuộc AC ). Kẻ CE vuông góc với BD tại E.
a. Chứng minh ∆ABD ~ ∆ECD;
b. Chứng minh = ;
c, Khi AB = 3cm; AC = 4cm, hãy tính độ dài đoạn AD và SCDE ?
d. kẻ đường thẳng vuông góc với BD tại B, đường thẳng này cắt đường thẳng AC tại K. Chứng minh: AD. CK = AK.CD;
e. Gọi T là giao điểm của AE và BK, H là hình chiếu vuông góc của A trên BD. Chứng minh ba điểm C; H; T thẳng hàng.
Cho tam giác ABC vuông tại A,AB=9cm,AC=12cm . Vẽ đường cao AH(H thuộc BC).
a) Chứng minh: tam giác ABC đồng dạng với tam giác HBA
b) Tính BC, AH.
c) Vẽ tia phân giác của góc A cắt BC tại D.Tính BD,CD,tính tỉ số diện tích của tam giác HAB và tam giác HCA
Cho ΔABC vuông tại B (AB<AC), đường cao BH.
a) Cm: ΔABC∼ΔAHB và AB2 = AH.AC
b)Vẽ AD là tia phân giác trong \(\widehat{BAC}\) (D thuộc BC) cắt BH tại M
Cm: \(\dfrac{AM}{AD}=\dfrac{DB}{DC}\)
c) Kẻ CI vuông góc với AD tại I. Chứng minh: AD2 = AB.AC-BD.CD
Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC
b,Tính độ dài các đoạn thẳng BC , AH
c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC
Cho tam giác ABC (AB<AC) có đường cao AD (D thuộc BC)
a/ Chứng minh hai tam giác DAB và ACB đồng dạng
b/ Phân giác góc ABC cắt AC tại E, từ C vẽ đường thằng vuông góc với đường thẳng BE tại F chứng minh AE.AB=EC.BD
c/ Kẻ FH vuông AC tại H chứng minh hai góc BCF và HCF bằng nhau
d/ I là trung điểm BC, chứng minh I,H,F thẳng hàng
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
Cho tam giác ABC vuông tại a có AB bằng 6 cm AC bằng 8 cm đường cao AH và đường phân giác BD cắt nhau tại I a) tính AC AD và DC b) chứng minh hai tam giác ABC và đồng dạng suy ra Ac2 = CH x BC c)chứng minh hai tam giác ABD và tam giác CDB đồng dạng b chứng minh IH x BC = IA. AD