a)Xét tứ giác AEDF có góc DEA=90(gt)
góc EAF=90(gt)
góc AFD=90(gt)
=>tứ giác AEDF là hình chữ nhật
b)Xét hình chữ nhật ABCD có IE=IF(gt)
=>I là giao điểm hai đường chéo
=>I là trung điểm của AD
=>A,I,D thẳng hàng
a)Xét tứ giác AEDF có góc DEA=90(gt)
góc EAF=90(gt)
góc AFD=90(gt)
=>tứ giác AEDF là hình chữ nhật
b)Xét hình chữ nhật ABCD có IE=IF(gt)
=>I là giao điểm hai đường chéo
=>I là trung điểm của AD
=>A,I,D thẳng hàng
Cho tam giác ABC vuông tại A, điểm d thuộc cạnh BC, gọi E và F lần lượt là hình chiếu của D trên AB và AC a) Chứng minh tứ giác AEDF là hình chữ nhật b) gọi I là trung điểm của EF. Chứng minh A,I,D thẳng hàng
Cho tam giác ABC vuông tại A. Gọi D,E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh rằng:
a. DE//AC, DF//AB.
b. Tứ giác AEDF là hình chữ nhật.
c. Gọi M và N lần lượt là các điểm đối xứng với D qua AB và AC. Chứng minh M đối xúng với N qua A.
Cho tam giác ABC vuông tại A. Điểm D bất kì trên cạnh BC. Qua D, kẻ DE song
song AC (E thuộc AB), DF song song AB (F thuộc AC). Chứng minh AEDF là
hình chữ nhật.
cho tam giác ABC vuông tại A, gọi I là trung điểm của BC, Từ I kẻ IM vuông góc AB ( M thuộc AB), kẻ IN vuông góc AC (N thuộc AC)
a) chứng minh tứ giác AMIN là hình hình chữ nhật
b) gọi D là điểm đối xứng với a qua I. Tứ giác ABDC là hình gì
c) tìm điều kiện của tam giác ABC để hình chữ nhật AMIN là hình vuông
Bài4: Cho tam giác ABC vuông tại A (AB < AC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N.
a) Chứng minh tứ giác AMIN là hình chữ nhật.
b) Cho AC = 20cm, BC = 25cm.Tính độ dài AI và diện tích ΔABC
Cho tam giác ABC cân tại A. Từ một điểm D trên đáy BC, vẽ đường thẳng vuông góc với BC cắt các đường thẳng AB, AC lần lượt tại N và M. gọi H và K lần lượt là trung điểm của BC và MN. Chứng minh rằng tứ giác AKDG là hình chữ nhật
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC
a) Chứng minh rằng AH = DE
b) Gọi I là trung điểm của HB, K là trung điểm của HC. Chứng minh rằng DI //EK
Bài 2. Cho tam giác ABC vuông tại A. Một đường thẳng song song với BC cắt hai cạnh AB và
AC lần lượt tại D và E. Gọi M và N lần lượt là trung điểm của DE và BC. Chứng minh rằng:
a) Ba điểm A, M, N thẳng hàng;
b) MN =
2
BC DE
Bài 3. Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HE AB; HF AC. Từ A vẽ một
đường thẳng vuông góc với EF cắt BC tại M. Chứng minh rằng M là trung điểm của BC.