a) Xét \(\Delta\)ABC và \(\Delta\)DEC có:
AC = DC (gt)
\(\widehat{ACB}\) = \(\widehat{DCE}\) (đối đỉnh)
BC = EC (gt)
=> \(\Delta\)ABC = \(\Delta\)DEC (c.g.c)
=> \(\widehat{BAC}\) = \(\widehat{CDE}\) (2 góc t/ư)
mà \(\Delta\)ABC vuông tại A nên \(\widehat{BAC}\) = 90o
=> \(\widehat{CDE}\) = 90o
b) Vì \(\Delta\)ABC = \(\Delta\)DEC (câu a)
=> AC = DC (2 cạnh t.ư)
mà AC = 3cm => DC = 3cm
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{ABC}\) + \(\widehat{BAC}\) + \(\widehat{BCA}\) = 180o
=> 40o + 90o + \(\widehat{BCA}\) = 180o
=> 130o + \(\widehat{BCA}\) = 180o
=> \(\widehat{BCA}\) = 50o
=> \(\widehat{DCE}\) = \(\widehat{BCA}\) = 50o.