Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại
D.Trên cạnh BC lấy điểm E sao cho BE = BA.
a. Chứng minh ΔABD = ΔEBD.
b. Chứng minh BD ⊥ AE tại H.
c. Qua A kẻ đường thẳng song song với BD cắt đường thẳng ED tại K. Chứng minh ΔADK cân, từ đó chứng minh D là trung điểm của EK.
d. Chứng minh KE < 2.AB.
GIÚP MIK GẤP THẬT SỰ CẢM ƠN!!
a, Xét ΔABD và ΔEBD có :
BD là cạnh chung
góc ABD = góc EBD (BD là tia phân giác của góc ABE)
BA = BE (gt)
=> ΔABD = ΔEBD (c.g.c)
b, Vì BA = BE (gt) => ΔABE cân tại B
Mà BD là tia phân giác của góc ABE
=> BD là đường cao ứng với AE (t/c)
=> BD ⊥ AE tại H
c, Vì BD // AK (gt) => góc BDA = góc DAK ( So le trong)
Vì BD // AK (gt) => góc EBD = góc ADK ( Đồng vị)
Mà góc BDA = góc EBD
=> góc DAK = góc ADK
=> ΔADK cân tại D
=> DA = DK
mà DA = DE
=> DK = DE
=> D là trung điểm của EK (điều phải chứng minh)