a/ Xét \(\Delta ABD;\Delta EBD\) có :
\(\left\{{}\begin{matrix}AB=BE\\\widehat{B1}=\widehat{B2}\\BDchung\end{matrix}\right.\)
\(\Leftrightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
b, \(\Delta ABD=\Delta EBD\left(cmt\right)\)
\(\Leftrightarrow AD=ED\)
Xét \(\Delta ADM;\Delta EDC\) có :
\(\left\{{}\begin{matrix}\widehat{MAD}=\widehat{DEC}=90^0\\AD=ED\\\widehat{ADM}=\widehat{EDC}\end{matrix}\right.\)
\(\Leftrightarrow\Delta ADM=\Delta EDC\left(g-c-g\right)\)
\(\Leftrightarrow EC=AM\)