Tam giác ABC vuông tại A. Kẻ AH vuông góc với BC tại H. Trên tia đối của tia AH lấy điểm K sao cho AK = BC. Trên tia đối của tia CA lấy điểm I sao cho CI = AB. chứng minh BK vuông góc với BI.
Cho tam giác ABC vuông tại A, đường trung tuyến AM. Biết AB 9cm, BC 15cm.
a. Tính AC.
b. Trên tia đối của tia MA lấy điểm D sao cho MD MA. Chứng minh MAB MDC .
c. Gọi K là trung điểm của AC , E là trung điểm của AB , BK cắt AD tại N. Chứng minh BDK cân và
ba điểm E, , N C thẳng hàng
cho tam giác ABC. M là trung điểm của AC. Trên tia đối của MB lấy điểm D sao cho MD=MB a) chứng minh rằng AB=CD; BC=AD b) lấy I thuộc AD tia AD cắt BC ở K. Chứng minh MI= MK
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, CK vuông góc với AE. Chứng minh rằng
a) Tam giác BHD = tam giác CKE b) Tam giác AHB = tam giác AKC c) BC song song với HK
Cho tam giác ABC có 3 góc nhọn (AB < AC). Trên cạnh AC lấy điểm M sao cho AB = AM. Gọi AD là tia phân giác của (D thuộc BC).
a) Chứng minh: .
b) Chứng minh rằng: góc DBA = góc DMA.
c) Từ D kẻ DI vuông góc với AB, DK vuông góc với AC (I thuộc AB, K thuộc AC). Chứng minh: BI = KM.
d) Trên tia đối của tia AB lấy điểm P sao cho A là trung điểm PI. Chứng minh: AD//PK. giúp mik với mik cần gấp
Cho tam giác ABC vuông tại A biết AB=3cm, AC=5cm
a, Tính BC
b, Trên tia đối của tia AB lấy điiemr D sao cho AD=AB. Chứng minh tam giác BCD là tam giác cân
c, Vẽ AH vuông góc với BC, AK vuông góc với DC ( H thuộc BC ) ( K thuộc DC ). Chứng minh tam giác AHC = tam giác AKD
Chứng minh HK song song BD
Bài 6: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.
a) Chứng minh ΔAMN là tam giác cân.
b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.
c) Gọi O là giao điểm của BH và CK. Chứng minh ΔOBC cân.
d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.