Cho tam giác ABC vuông tại A . Trên cạnh BC lấy điêm E sao cho BE=BA . Tia phân giác của góc B cắt AC ở D
a) Chứng minh tám giác ABD=tam giác EBD
b) Chứng minh DE vuông góc với BC
c) Trên tia đối của tia AB lấy điểm F sao cho AF =EC . Chứng minh DC=DF và ba điểm E,D,F thẳng hàng
Bài 53: Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
b) Chứng minh: AABC = AABD.
b) Trên tia đối của tia AB lấy điểm M. Chứng minh: MD = MC
Bài 55: Cho tam giác ABC có A =90°, tia phân giác BD của góc B (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BE = BA.
a) So sánh độ dài các đoạn AD và DE, so sánh EDC và ABC.
b) Chứng minh: AEBD.
Bài 56: Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA.
a) Chứng minh rằng: AC//BE.
b) Gọi I là một điểm trên cạnh AC, K là một điểm trên cạnh EB sao cho AI = EK. Chứng minh ba điểm I, M,K thẳng hàng.
Cho tam giác ABC vuông tại A. Kẻ tia phân giác của ABC cắt cạnh AC tại M. Trên cạnh BC lấy điểm N sao cho BN = BA.
1) Chứng minh: tam giác BAM = tam giác BNM.
2) Gọi I là giao của BM và AN. Chứng minh I là trung điểm của đoạn thẳng AN.
3) Trên tia đối của tia AB lấy điểm K sao cho AK = NC. Chứng minh ABC = NMC và K, M, N là ba điểm thẳng hàng.
Cíu với ngày kia thi r:(
1, Cho \(\Delta\)ABC(AB=BC). AD là tia phân giác của \(\widehat{A}\):
a, Chứng minh \(\Delta ABD=\Delta ACD\)
b, Chứng minh BD=CD
2, Cho \(\Delta ABC\)\(\perp\)tại A trên cạnh BC là điểm E sao cho BE=AB. Kẻ tia phân giác BD của \(\widehat{B}\)
a, Chứng minh \(\Delta ABD=\Delta EBD\)
b, Tính \(\widehat{DEB}\)
c, Gọi I là giao điểm BD và AE. Chứng minh BD\(\perp\)AE
Chú ý: Vẽ hình 2 bài
Cho ABC vuông tại A có AB=3 cm; BC=5cm
a, tính độ dài AC
b, vẽ phân giác BD (D thuộc AC), từ D vẽ DE vuông tại BC (E thuộc BC).
Chứng minh DA=DE.
ED cắt AB tại AB tại F. Chứng minh tam giác ADF=EDC
Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
Chứng minh rằng ; a) BC = BD b) BA là tia phân giác của góc DBC.
Cho tam giác ABC; AB = AC, D là điểm bất kì trên cạnh AB. Đường phân giác của góc A cắt cạnh DC tại M, cắt cạnh BC tại I.
a) Chứng minh: CM = BM
b) Kẻ DH vuông góc với BC tại H. Chứng minh: A = 2BDH.