Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
trần thị thu hằng

Bài 53: Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.
b) Chứng minh: AABC = AABD.
b) Trên tia đối của tia AB lấy điểm M. Chứng minh: MD = MC
Bài 55: Cho tam giác ABC có A =90°, tia phân giác BD của góc B (D  AC). Trên cạnh BC lấy điểm E sao cho BE = BA.
a) So sánh độ dài các đoạn AD và DE, so sánh EDC và ABC.
b) Chứng minh: AEBD.
Bài 56: Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA.
a) Chứng minh rằng: AC//BE.
b) Gọi I là một điểm trên cạnh AC, K là một điểm trên cạnh EB sao cho AI = EK. Chứng minh ba điểm I, M,K thẳng hàng.

Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 5:56

Bài 55:

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}=90^0\)

=>DE\(\perp\)BC tại E

Ta có: \(\widehat{EDC}+\widehat{C}=90^0\)(ΔEDC vuông tại E)

\(\widehat{ABC}+\widehat{C}=90^0\)(ΔABC vuông tại A)

Do đó: \(\widehat{EDC}=\widehat{ABC}\)

b: ta có: ΔBAD=ΔBED

=>DA=DE
=>D nằm trên đường trung trực của AE(1)

Ta có:BA=BE

=>B nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

=>BD\(\perp\)AE 

Bài 56:

a: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>AC//BE và AC=BE

b: Xét ΔIAM và ΔKEM có

IA=KE

\(\widehat{IAM}=\widehat{KEM}\)(hai góc so le trong, AC//BE)

MA=ME

Do đó: ΔIAM=ΔKEM

=>\(\widehat{IMA}=\widehat{KME}\)

mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)

nên \(\widehat{KME}+\widehat{IME}=180^0\)

=>K,M,I thẳng hàng


Các câu hỏi tương tự
Trần Phan Ngọc Lâm
Xem chi tiết
Lê Thị Minh Thư
Xem chi tiết
Anh Thư
Xem chi tiết
Thao Nguyen
Xem chi tiết
Nguyễn KHánh huyền
Xem chi tiết
Vinh Youtube
Xem chi tiết
Phi Yến
Xem chi tiết
Lương Thanh Sơn WIBU
Xem chi tiết
Anh Lan Nguyen
Xem chi tiết