\(\left\{{}\begin{matrix}AD=DB\\MD=DC\\\widehat{ADM}=\widehat{BDC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AMD=\Delta BDC\left(c.g.c\right)\\ \Rightarrow\widehat{DAM}=\widehat{ABC}\left(1\right)\\ \left\{{}\begin{matrix}AE=EC\\EN=BE\\\widehat{AEN}=\widehat{BEC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\\ \Rightarrow\widehat{EAN}=\widehat{ACB}\left(2\right)\)
Xét tam giác ABC: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^0\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{BAC}+\widehat{ADM}+\widehat{AEN}=180^0\\ \Rightarrow\widehat{MAN}=180^0\)
Do đó \(\widehat{MAN}\) là góc bẹt hay M,A,N thẳng hàng
Lại có \(AM=BC\left(\Delta AMD=\Delta BDC\right);AN=BC\left(\Delta AEN=\Delta CEB\right)\)
Vậy AM=AN hay A là trung điểm MN