Bài 4: Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Lan Nguyen

Cho tam giác ABC , gọi D, E lần lượt là trung điểm của AB, AC. Trên tia đối của tia
DC, lấy điểm M sao cho MD = CD. Trên tia đối của tia EB, lấy điểm N sao cho EN =BE. chứng minh : A là trung điểm của MN.
 

Nguyễn Hoàng Minh
18 tháng 11 2021 lúc 18:45

\(\left\{{}\begin{matrix}AD=DB\\MD=DC\\\widehat{ADM}=\widehat{BDC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AMD=\Delta BDC\left(c.g.c\right)\\ \Rightarrow\widehat{DAM}=\widehat{ABC}\left(1\right)\\ \left\{{}\begin{matrix}AE=EC\\EN=BE\\\widehat{AEN}=\widehat{BEC}\left(đối.đỉnh\right)\end{matrix}\right.\Rightarrow\Delta AEN=\Delta CEB\left(c.g.c\right)\\ \Rightarrow\widehat{EAN}=\widehat{ACB}\left(2\right)\)

Xét tam giác ABC: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^0\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\widehat{BAC}+\widehat{ADM}+\widehat{AEN}=180^0\\ \Rightarrow\widehat{MAN}=180^0\)

Do đó \(\widehat{MAN}\) là góc bẹt hay M,A,N thẳng hàng

Lại có \(AM=BC\left(\Delta AMD=\Delta BDC\right);AN=BC\left(\Delta AEN=\Delta CEB\right)\)

Vậy AM=AN hay A là trung điểm MN


Các câu hỏi tương tự
Lương Thanh Sơn WIBU
Xem chi tiết
Bạch Tiểu Nhi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Như Ý channel
Xem chi tiết
Anh Thư
Xem chi tiết
Trần Phan Ngọc Lâm
Xem chi tiết
Võ Thị Mạnh
Xem chi tiết
SON123
Xem chi tiết
Mok
Xem chi tiết