cho tam giác abc vuông tại A (AB<AC) ke Ah vuông với bc tại h trê cạnh ac lấy điểm d sao cho ad=ah gọi e là trung điểm của hd tia ae cắt bc tai f cm a) tam giác ahe= tam giác ade và ae vuông tại hd b) tam giác ahf = tam giác adf c) góc dfc= góc abc
Cho tam giác ABC vuông tại A. Tia phân giác BD của góc B. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) So sánh các đoạn thẳng AD và DE.
b) Chứng minh: AE vuông góc BD
c) Đường thẳng đi qua C và vuông góc với tia BD cắt tia BA tại F. Chứng minh: tam giác BFC cân và F; D; E thẳng hàng.
cho tam giác ABC có AB<AC. Trên cạnh BC lấy điểm M sao cho AM=AB. Gọi E là trung điểm của BM. a) chứng minh rằng AE là tia phân giác của góc A. b) Chứng minh rằng AE vuông góc BM. c) tia AE cắt BC tại K, chứng minh rằng KB=KM
cho tam giác ABC vuông tại A. trên cạnh BC lấy điểm D sao cho BD = BA. tia phân giác của góc B cắt AC ở E. Qua C, vẽ đường thẳng vuông góc với BE tại H. CH cắt đường thẳng AB tại F. a) CM: tam giác BEA = tam giác BED b) CM: tam giác BHF = tam giác BHC c) CM: D,E,F thẳng hàng
Cho tam giác ABC. Ở miền ngoài của tam giác ABC, vẽ hai tam giác ABD và ACE là những tam giác vuông tại A và có AD = AB, AE = AC. Gọi H là chân đường vuông góc kẻ từ A xuống BC và M là trung điểm của BC. Tia HA cắt DE tại K, tia MA cắt DE tại I. CMR:
a) AI _|_ DE.
b) KD = KE.
Cho tam giác ABC vuông tại A AB bé hơn AC tia phân giác của góc ABC cắt AC tại D. lấy điểm E trên cạnh BC sao cho be = AB. a) chứng minh tam giác ABD bằng tam giác ABD. b) Chứng minh DE vuông góc với AC. c) tia ED cắt BA tại M chứng minh EC = AM
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm G sao cho BG = BA. Gọi I là trung điểm của AG.
a) Chứng minh rằng: BI là tia phân giác của ABC
b) Chứng minh rằng: BI vuông AG
c) Tia BI cắt AC tại F. Chứng minh rằng: GF vuông BC