a) Xét \(\Delta ABM\) và \(\Delta DCM\) có:
AM = DM (gt)
BM = CM (M là trung điểm BC)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
\(\Rightarrow\Delta ABM=\Delta DCM\) (c-g-c)
b) Do \(\Delta ABM=\Delta DCM\) (cmt)
\(\Rightarrow AB=CD\) (hai cạnh tương ứng) và \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng)
\(\Rightarrow\widehat{ABC}=\widehat{DCB}\)
Xét \(\Delta ABC\) và \(\Delta DCB\) có:
AB = CD (cmt)
\(\widehat{ABC}=\widehat{DCB}\) (cmt)
BC là cạnh chung
\(\Rightarrow\Delta ABC=\Delta DCB\) (c-g-c)
\(\Rightarrow\widehat{BAC}=\widehat{BDC}\) (hai góc tương ứng)
Mà \(\widehat{BAC}=90^0\)
\(\Rightarrow\widehat{BDC}=90^0\)
Hay \(DB\perp DC\)