Cho tam giác ABC có 3 góc nhọn. Vẽ đường tròn tâm O, đường kính BC, lần lượt cắt AB và AC tại D,E; BE cắt CD tại H. Chứng minh AH vuông góc BC
Cho tam giác ABC nhọn (AB < AC) , vẽ đường tròn tâm O đường kính BC cắt AB và AC tại D và E, CD cắt BE tại H. a) Chứng minh AH vuông góc BC. b) Chứng minh 4 điểm A, E, H, D cùng thuộc một đường đường tròn, xác định tâm I của đường tròn qua 4 điểm. c) Chứng minh 4 điểm B, C, D, E cùng thuộc 1 đường tròn. Xác định tâm O của đường tròn đi qua 4 điểm d) Chứng minh OI vuông góc với DE
Cho tam giác ABC nhọn,đường tròn tâm O,đường kính BC cắt 2 cạnh AB,AC lần lượt tại M và N.Gọi H là giao điểm của BN và CM
a)Chứng minh AH vuông góc với BC
b) Chứng minh MN<BC
c)Gọi I là trung điểm MN.Chứng minh OI vuông góc với MN
Cho tam giác ABC vuông tại A. Đường tròn (O), đường kính AB cắt các đoạn BC và OC lần lượt tại D và I. Gọi H là hình chiếu của A lên OC; AH cắt BC tại M.
a/ CM: Tứ giác ACDH nội tếp; \(\widehat{CHD}=\widehat{ABC}\)
b/ CM: 2 tam giác OHB và OBC đồng dạng; HM là tia phân giác góc BHD
c/ Gọi K là trung điểm của BD. CM: MD.BC = MB.CD và MB.MD = MK.MC
d/ Gọi E la trung điểm của AM và OK; J là giao điểm của IM với (O) \(\left(J\ne I\right)\). CM: OC và Ẹ cắt nhau tại một điểm nằm trên (O).
Cho ∆ABC nhọn AB < AC. Đường tròn tâm O đường kính BC lần lượt cắt cạnh
AB và AC tại E và D. Gọi H là giao điểm của BD và CE.
a.Chứng minh: các tam giác BEC và BDC là các tam giác vuông. Từ đó suy ra: H là
trực tâm của ∆ABC.
b. Qua B, dựng Bx vuông góc với AB. Qua C, dựng Cy vuông góc với AC. Gọi K là
giao điểm của Bx và Cy. Chứng minh: bốn điểm A, B, K, C cùng thuộc đường tròn
và xác định tâm I của đường tròn đó.
Cho tam giác ABC có góc A=90độ, AH vuông góc với BC. Vẽ đường tròn tâm A bán kính AH. Gọi HD là đường kính của đường tròn đó. Tiếp tuyến tại D của đường tròn cắt CA tại E.
1)Cho AB=3cm,AC=4cm.Tính AH
2) Chứng minh tam giác BCE cân
3)Chứng minh BE là tiếp tuyến của (A;AH)
4)Kẻ KP vuông góc HD (P thuộc HD).CM: BD đi qua trung điểm của KP
Cho tam giác ABC nhọn . Vẽ đường tròn đường kính BC cắt AB tại M , AC tại N .
a. Chứng minh BN vuông với AC , CM vuông góc với AB.
b. Gọi H là giao điểm của BN và CM. Chứng minh AH vuông với BC.
cho nửa đưởng tròn tâm o đường kính ab. lấy điểm d trên bán kính ob (khác O,B). gọi h là trung điểm của ad.đường vuông góc tại h với ab cắt nửa đường tròn tại c. đường tròn tâm i đường kính bd cắt tiếp bc tại e a) tứ giác acde là hình gì ? b)c/m tam giác ceh cân tại h và he là tiếp tuyến của (I)
Cho tam giác ABC vuông tại A, có AB = 6 cm, AC = 8 cm, đường cao AH. Vẽ đường tròn tâm O đường kính HC cắt AC tại D.
a) Tính bán kính đường tròn (O) .
b) Gọi I là trung điểm AH. Chứng minh ID là tiếp tuyến của đường tròn (O).
c) Gọi M là trung điểm của đoạn thẳng DC .Đường thẳng ID cắt các tia OM và OB lần lượt tại E và F. Chứng minh: EF.ID = IF.DE .