Cho tam giác ABC có \(\widehat{A}\) = 120o , đường phân giác AD. Chứng minh rằng:
\(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{AD}\)
Cho tam giác ABC, trung tuyến BM cắt đường phân giác CD của góc ACB tại P. Chứng minh: \(\dfrac{PC}{PD}-\dfrac{AC}{BC}=1\)
Bài 1: Cho tam giác abc có AB = 5cm AC = 7cm BC = 9cm. Đường phân giác AD. Tính DB, DC
Bài 2: Cho tam giác ABC vuông tại A. AB = 6cm, AC = 8cm, phân giác AD. Tính DB, DC
Tam giác ABC có độ dài các cạnh AB = m, AC = n và AD là đường phân giác. Chứng minh rằng tỉ số diện tích của tam giác ABD và diện tích của tam ACD bằng \(\dfrac{m}{n}\) ?
Bài 3:Cho tam giác ABC với trung tuyến AM.Tia phân giác góc AMB cắt cạnh AB tại D,tia phân giác góc AMC cắt cạnh AC tại E.
a)Chứng minh DE và BC song song với nhau.
b)Gọi I là giao điểm của AM,DE.Chứng minh IM=\(\dfrac{1}{2}\)DE.
Cho tam giác ABC(AB<AC), AD là phân giác trong của góc A. Qua trung điểm E của cạnh BC, vẽ đường thẳng song song với AD, cắt cạnh AC tại F, cắt đường thẳng AB tại G. Chứng minh CF=BG
Cho tam giác ABC vuông tại A , có AB= 6, BC=10. Đường phân giác góc B cắt AC tại D. Tính độ dài AD, DC
Tam giác ABC có các đường phân giác AD,BE và CF (h.15)
Chứng minh rằng :
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=1\)
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH.CD = BD.CH