Cho tam giác ABC vuông tại A, đường cao AH.Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC. 1.Chứng minh AD.AB=AE.AC .
2.Gọi M,N lần lượt là trung điểm của BH và CH. Chứng minh DE là tiếp tuyến chung của hai đường tròn (M;MD) và (N;NE).
3. Gọi P là trung điểm của MN, Q là giao điểm của DE và AH. Gỉa sử AB=6cm, AC=8cm. Tính độ dài PQ.
Giúp mình với. Mai thầy kiểm tra bài này rồi. Mình ngu toán hình cực.
~ ~ ~ ~ ~
Tam giác HAB có HD là đường cao
\(\Rightarrow AH^2=AD\times AB\left(htl\right)\left(1\right)\)
Tam giác HAC có HE là đường cao
\(\Rightarrow AH^2=AE\times AC\left(htl\right)\left(2\right)\)
(1) và (2) => đpcm
~ ~ ~ ~ ~
HDA = DAE = AEH = 900
=> ADHE là hcn
=> EDH = AHD và HED = EHA
- - -
Tam giác DBH vuông tại D có DM là trung tuyến (M là trung điểm của BH)
=> DM = MH
=> Tam giác MDH cân tại M
=> MDH = MHD
Ta có: MDE = MDH + HDE = MHD + DHA = AHB = 900
=> MD _I_ DE
=> DE là tiếp tuyến của đường tròn (M ; MD) (3)
- - -
Tam giác ECH vuông tại E có EN là trung tuyến (N là trung điểm của CH)
=> EN = NH
=> Tam giác NEH cân tại N
=> NEH = NHE
Ta có: NED = NEH + HED = NHE + EHA = AHC = 900
=> NE _I_ DE
=> DE là tiếp tuyến của đường tròn (N ; NE) (4)
(3) và (4) => đpcm
~ ~ ~ ~ ~
Tam giác ABC vuông tại A có AH là đường cao:
(+) BC2 = AB2 + AC2 (ptg)
=> BC = 10 (cm)
(+) AB2 = BH . BC (htl)
=> BH = 3,6 (cm)
(+) AC2 = HC . BC (htl)
=> HC = 6,4 (cm)
\(DM=\dfrac{BH}{2}=1,8\left(cm\right)\)
\(EN=\dfrac{HC}{2}=3,2\left(cm\right)\)
MD _I_ DE và NE _I_ ED
=> MD // NE
=> MDEN là hình thang
Q là trung điểm của DE (ADHE là hcn)
P là trung điểm của MN (gt)
=> PQ là đtb của hình thang MDEN
\(\Rightarrow PQ=\dfrac{\left(DM+EN\right)}{2}=2,5\left(cm\right)\)
~ ~ ~ ~ ~