cho tam giác ABC vuông tại A đường cao AH ,trung tuyến AM . Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a)chứng minh ADHE là hình chữ nhật.
b.chứng minh AM vuông góc DE
c.biết AB=6cm,AC=8cm.tính DE? d.Gọi N là giao điểm của AM và HE.K là hình chiếu của điểm M trên AB.CMR: MK,BN,AH đồng quy
mọi người giúp tớ với hic:<
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=BH\cdot CH\)
b: Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC
=>góc AED+góc MAC=90 độ
=>AM vuông góc với DE
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(DE=AH=\dfrac{AB\cdot AC}{CB}=4.8\left(cm\right)\)