Bài 7: Hình bình hành

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
NGUYỄN THỊ THÙY DƯƠNG

Cho tam giác ABC vuông tại A đường cao AH kẻ HM vuông góc với AB tại M và HN vuông góc tAC tại N
 c, lấy điểm D đối xứng với h điểm H qua điểm M Chứng minh ba điểm D a k thẳng hàng và chứng minh bc² = bc bình phương + ck bình phương+  2bh x HC

Nguyễn Lê Phước Thịnh
12 tháng 12 2023 lúc 22:48

c: Sửa đề: D đối xứng với H qua M

Xét ΔAHK có

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAHK cân tại A

Ta có: ΔAHK cân tại A

mà AC là đường cao

nên AC là phân giác của góc HAK

=>\(\widehat{HAK}=2\cdot\widehat{HAC}\)

Xét ΔAHD có

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHD cân tại A

Ta có: ΔAHD cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAD

=>\(\widehat{HAD}=2\cdot\widehat{HAB}\)

Ta có: \(\widehat{HAK}+\widehat{HAD}=\widehat{DAK}\)

=>\(\widehat{DAK}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)

=>\(\widehat{DAK}=2\left(\widehat{HAC}+\widehat{HAB}\right)=2\cdot\widehat{BAC}=2\cdot90^0=180^0\)

=>D,A,K thẳng hàng

Sửa đề: \(BD^2+CK^2+2\cdot BH\cdot HC\)

Xét ΔBHD có

BM là đường cao

BM là đường trung tuyến

Do đó: ΔBHD cân tại B

=>BH=BD

Xét ΔCKH có

CN là đường cao

CN là đường trung tuyến

Do đó: ΔCKH cân tại C

=>CK=CH

\(BD^2+CK^2+2\cdot BH\cdot HC\)

\(=BH^2+HC^2+2\cdot BH\cdot HC\)

\(=\left(BH+HC\right)^2=BC^2\)


Các câu hỏi tương tự
NGUYỄN THỊ THÙY DƯƠNG
Xem chi tiết
NGUYỄN THỊ THÙY DƯƠNG
Xem chi tiết
Ngụy Hoàng Gia Lạc
Xem chi tiết
Tăng Thành Hiếu 8/17
Xem chi tiết
Tăng Thành Hiếu 8/17
Xem chi tiết
Hiền Nguyễn
Xem chi tiết
Đàm Tùng Vận
Xem chi tiết
Nguyễn Ngọc Nhân
Xem chi tiết
Không Khí
Xem chi tiết