Cho tam giác ABC vuông tại A có đường cao AH. Qua C vẽ đường thẳng song song với AB và cắt AH tại D, biết AB = 20cm, AC = 15cm
a) CM : tam giác ABC đồng dạng vs tam giác HBA và tính BC, AH
b) CM : AC2 = AB.DC
c) Gọi I,K lần lượt là trung điểm của AB và CD. CM : I,H,K thẳng hàng.
Giúp mk vs mnnnn
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABC vuông tại A, AB , AC, đường cao AH.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABc suy ra AB2 = BH. BC
b) Qua B vẽ đường thẳng song song với AC cắt AH tại D. Chứng minh HA.HB + HC.HD
c) Chứng minh AB2 = AC.BD
d) Gọi K là trung điểm AH. Trên đoạn AC lấy điểm N sao cho góc HBK bằng góc ABN. Gọi M là trung điểm Bd. Chứng minh M, H, N thẳng hàng
Cho tam giác ABC vuông tại A, có AB=6cm, AC=8cm và đường cao AH a. Cm tam giác ABC ~ tam giác AHB b. Tính BC,HB c. Qua B vẽ đường thẳng d vuông góc với AC, tia phân giác của góc BAC cắt BC tại M và cắt đường thẳng d tại N. Cm AB/AC= MN/AM
Cho tam giác ABC vuông tại A có AB = 6cm ; AC= 8cm . Đường cao AH và phân giác BD cắt nhau tại I ( H trên BC và D trên AC ) .
a) Tính độ dài AD , DC
b) Cm : tam giác ABC đồng dạng với tam giác HBA và AB^2 = BH.BC
c) Cm : tam giác ABI đồng dạng với tam giác CBD
d) Cm : \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
( Giải giúp mình câu c với d ạ cảm ơn ^^ )
Cho tam giác ABC vuông tại A có đường cao AH
a) CM tam gíac ABH đồng dạng vs tam giác ABC
b)Từ B kẻ đường thẳng song song vs AH và cắt AC tại I. CM tam giác ABI đồng dạng vs tam giác ABH
c) Kẻ AK vuông góc vs BI. CM tam giác AKB đồng dạng vs tam giác ABI
d) CM tam giác BKH đồng dạng vs tam giác BCI
cho tam giác ABC vuông tại A có AB=8cm, AC=6cm
a) vẽ đường cao AH .CM tam giác ABC đồng dạng tam giác HBA
b) qua C kẻ đường thẳng song song với AB cắt AH tại D. Cm tam giác AHB đồng dạng tam giác DHC
Tam giác ABC vuông tại A, có đường cao AH. M, N lần lượt là trung điểm của AH, BH.
a) Cm: tam giác HMN đồng dạng tam giác HAB.
b) Cm: HM.HA=HN.HC
c) Cm: tam giác AHN đồng dạng tam giác CHM.
d) Gọi K là giao điểm của MN với AC, I là giao điểm của CM với AN. Cm: KM là tia phân giác góc IKH.
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH
a) CM tam giác ABC đồng dạng tam giác HBA. Từ đó suy ra AB^2=BH.BC
b) Gọi D là điểm thuộc HC. Đường vuông góc với BC cắt AC tại E. CM góc ADC= góc BEC
c) CM CH/AC=DA/EB