\(S_{ABC}=\frac{AB.AC}{2}=\frac{b.c}{2}\)
\(\frac{\left(a+b+c\right)\left(b+c-a\right)}{4}=\frac{ab+ac-a^2+b^2+bc-ab+bc+c^2-ac}{4}\)\(=\frac{-a^2+b^2+c^2+2bc}{4}=\frac{-\left(b^2+c^2\right)+\left(b^2+c^2\right)+2bc}{4}=\frac{2bc}{4}=\frac{bc}{2}\)
=>\(S_{ABC}=\frac{\left(a+b+c\right)\left(b+c-a\right)}{4}\left(đfcm\right)\)