Cho ΔABC vuông tại A, có AB<AC. Trên cạnh BC lấy điểm D sao cho BA=BD. Kẻ AH⊥BC, AK⊥AC.
a) Chứng minh: ∠BAD=∠BDA
b) Chứng minh: AD là phân giác của ∠HAC
c) Chứng minh: AK=AH
Cho tam giác ABC vuông tại A có AB = 5cm , AC = 12cm . Kẻ đường cao AH ( H thuộc BC).
a) Tính độ dài cạnh BC
b) Tia phân giác của góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC ( K thuộc AC ). Chứng minh tam giác AHD = tam giác AKD
c) Chứng minh tam giác BAD cân
d) Tia phân giác của góc BAH cắt BC tại E. Chứng minh AB + AC = BC + DE
giúp mình với ạ , tầm 30 phút nữa mình phải kt bài này rồi :(
cho tam giác ABC vuông tại A , đường cao AH . Trên cạnh BC lấy điểm D sao cho BD = BA
a) Chứng minh góc BAD = BDA
b) Chứng minh AD là tia phân giác của góc HAC
c) Vẽ DK ⊥ AC ( K ∈ AC) . Chứng minh AH = AK
d) Chứng minh AB + AC < BC + 2AH
Mai mình phải nộp rồi giúp với ( T^T)
Cho tam giác ABC cố đường cao AH. trên cạnh BC lấy điểm D sao cho BD=BA
a,Chứng minh :góc BAD=góc BDA
b,Chứng minh :góc HAD + góc BDA= góc DAC+ góc DAB.Từ đó suy ra AD là phân giác của góc HAC
c,Kẻ DK ⊥ AC.Chứng minh AK=AH
d,Chứng minh :AB+AC<BC+AH
Cho tam giác ABC vuông tại A có góc ACB= 30° trên cạnh BC lấy điểm D sao cho BA=BD tia phân giác của góc B cắt AC tại I 1, chứng minh tam giác BAD đều 2, chứng minh tam giác IBC cân 3, chứng minh D là trung điểm của BC 4, cho AB=6cm tính BC, AC 5, trên tia đối của tia ID lấy diểm E sao cho IE=IC chứng minhED=AC 6, tam giác ACE là tam giác gì ? Vì sao?
Cho tam giác ABC có AB=AC=10cm, BC=12cm. Vẽ AH vuông góc BC tại H a) Chứng minh tam giác AHB=tam giác AHC, từ đó chứng minh AH là tia phân giác của góc A b) Tính độ dài AH c) Từ B kẻ Bx vuông góc AB, từ C kẻ Cy vuông góc AC, chúng cắt nhau tại O. Tam giác ABC là tam giác gì, vì sao?
cho tam giác ABC vuông tại A. trên cạnh BC và BA lấy điểm M và điểm N sao cho AN=AH; CM=CA. chứng minh HN vuông góc AB; chứng minh BC+AH>AC+AB Giúp mik với
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) chứng minh BD vuông góc với CF c) chứng minh EDF thẳng hàng
Cho ABC ∆ cân tại A, kẻ AH vuông góc với BC tại H. a/ Chứng minh: AHB AHC ∆ =∆và AH là tia phân giác của BAC b/ Từ H kẻ HM AB ⊥ , HN AC ⊥ ( ∈∈ M AB, N AC), AH cắt MN tại K. Chứng minh: AH MN ⊥ c/ Trên tia đối của tia HM lấy HP sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng