Cho tam giác ABC vuông tại A (AB < AC). Tia phân giác của gpc1 ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA. Vẽ AH vuông góc với BC tại H. Trên tia DE lấy điểm K sao cho DK = AH. Gọi M là trung điểm của DH. Chứng minh rằng: A, M, K thẳng hàng
cho tàgiacs ABC nhọn vẽ BD vuông góc AC tại D và CE vuông góc AB tại E .các đường thẳng BD và CE cắt nhâu tại H gọi M la trung điểm cuae cạnh CB.trên tia đối cuae tia MH lấy điểm K sao cho M MH=MK
a)vẽ HI vuông góc với Bc tại I trên tia HI lấy điểm G sao cho HI=Ig chứng minh GC=BK
(Vẽ cả hình nhé )
Cho ΔABC vuông tại A có AB < AC. Vẽ AH ⊥ BC taaji H. Vẽ HI ⊥ AB tại I. Trên tia HI lấy điểm D sao cho I là trung điểm của DH
a) Chứng minh: Δ ADI = Δ AHI
b) Chứng minh: AD ⊥ BD
c) Cho BH = 9cm và HC = 16cm. Tính AH
d) Vẽ HK ⊥ AC tại K trên tia HK lấy điểm E sao cho K là trung điểm của HE. Chứng minh: DE < BD + CE
Cho tam giác ABC; góc A=90 độ(AB > AC). Gọi M là trung điểm của BC. Trên tia đối tia MA lấy điểm D sao cho MD = MA. Vẽ AH vuông góc BC tại H trên tia đối HA lấy E sao cho HE = HA. Chứng minh rằng:
a) CD vuông góc với AC
b) BD = CE
c) BD = CE
d) Cho góc MAE = góc MEA và góc MDE = góc MED. Chứng minh AE vuông góc ED
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Cho tam giác nhọn ABC. Trên nửa mặt phẳng bờ AB ko chứa C,lấy D sao choAD=AB và AD vuông góc với AB. Trên nửa mặt phẳng bờ AC ko chứa B lấy E sao cho AE=AC và AE vuông góc với AC. Kẻ AH vuông góc với BC tại H. AH cắt DE tại K. Chứng minh K là trung điểm của DE
Cho tam giác ABC có 3 góc nhọn. Kẻ BD vuông với AC, kẻ CE vuông góc với AB tại E. Trên tia đối của tia BD lấy điểm H sao cho BH = AC, trên tia đối của tia CE lấy điểm K sao cho CK = AB. CMR:
a) Góc ABD = ACE
b) AH = AK, AH vuông với AK
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Bài 1: Cho ΔABC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME=MA. chứng minh
a/ ΔABM=ΔECM
b/ AB//CE
Bài 2: Cho ΔABC vuông ở A và AB=AC. Gọi K là trung điểm của BC
a/ Chứng minh : ΔAKB=ΔAKC
b/ Chứng minh: AK vuông góc với BC
c/ Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK
Bài 3: Cho Δ ABC có AB=AC, M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho AM= MA
a/ Chứng minh ΔABM=ΔDCM
b/ Chứng minh AB//DC
c/ Chứng minh AM vuông góc với BC
d/ Tìm điều kiện của ΔABC để góc ADC bằng 30o
Bài 4: Cho ΔABC vuông tại A có góc B=30o
a/ Tính góc C
b/ Vẽ tia phân giác của góc C cắt cạnh AB tại D
c/ TRên cạnh CB lấy điểm M sao cho CM=CA. Chứng minh ΔACD=ΔMCD
d/ Qua C vẽ đường thẳng xy vuông góc CA. Từ A kẻ đường thẳng song song với CD cắt xy ở K. Chứng minh : AK=CD
e/ Tính góc AKC.
Bài 5: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=Bd
a/ Chứng minh AD=BC
b/ Gọi E là giao điểm AD và BC. Chứng minhΔEAC=ΔEBD
c/ Chứng minh OE là phân giác của góc xOy