a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=góc BAD=90 độ
b; AH vuông góc BC
DE vuông góc BC
=>AH//DE
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>DA=DE và góc BED=góc BAD=90 độ
b; AH vuông góc BC
DE vuông góc BC
=>AH//DE
Cho Tam giác ABC vuông tại A.Trên cạnh BC lấy điểm E sao cho BE = BA. Qua E vẽ đường thẳng vuông góc với BC , cắt AC tại D và cắt tia BA tại K
a)Chứng minh ∆ABD = ∆EBD rồi suy ra BD là tia phân giác của góc ABC
b) Chứng minh ∆BEK =∆ BAC
c) Chứng minh AE // KC
d) Vẽ DI vuông góc với KC tại I.Chứng minh ba điểm B , D , I thẳng hàng
Cho tam giác ABC vuông tại A có AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a) Chứng minh △BHA = △BHD
b) Trên tia HC lấy điểm K sao cho HK = HB. Chứng minh △HBA = △HDK và DK song song với AB.
c) Chứng minh đường thẳng DC ⊥ AK.
Bài 13: Cho tam giác ABC vuông tại A, AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia HC lấy điểm D sao cho HD = HA. Đường thẳng vuông góc với BC tại D cắt AC tại E. Vẽ EF vuông góc với AH tại F.
a) Chứng minh: ED // FH
b) Chứng minh: , từ đó suy ra EF = DH.
c) Chứng minh: . Từ đó chứng minh: .
d) Chứng minh AB = AE và tính số đo các góc của tam giác ABE.
Cho tam giác ABC nhọn (AB < AC) và M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA (Vẽ hình).
a) Chứng minh tam giác AMB bằng tam giác DMC và AB song song với CD.
b) Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm E sao cho HE = HA. Chứng minh BE = CD.
c) Vẽ đường thẳng vuông góc với AB tại B cắt đoạn thẳng MD tại I. Trên tia MA lấy điểm F sao cho MF = MI. Chứng minh CF vuông góc với AB.
Cho tam giác ABC vuông ở A trên cạnh CB lấy điểm D sao cho CA = CD, kẻ tia phân giác cho góc C cắt AB tại E
a. Chứng minh: Tam giác CAE = CDE. Tìm số đo góc EDC
b. kẻ AH song song ED (H thuộc BC), AH cắt CE ở K. Chứng minh: AH vuông góc BC
Cho∆ABC có AB<AC tia phân giác của góc A cắt BC tại D.Trên tia AC lấy điểm E sao cho BA=AE.
a) chứng minh tam giác BDE là tam giác cân.
b) gọi I là giao điểm của BE và AD. Từ B kẻ đường thẳng song song DE cắt AD tại F. Chứng minh BE là phân giác của góc DBF. Từ đó suy ra I là trung điểm của DF
c) chứng minh BD<DC
Cho tam giác ABC vuông tại A có AB > AC. Vẽ AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HD = HA.
a) Chứng minh △BHA = △BHD.
b) Trên tia HC lấy điểm K sao cho HK = HB. Chứng minh △HBA = △HDK và DK sonh song với AB.
c) Chứng minh đường thẳng DC ⊥ AK.
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại
D. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh: ABD = EBD. b) Chứng minh: BD AE
c) Gọi F là giao điểm của BA và ED. Chứng minh: AF = CE.
d) Gọi I là trung điểm của CF. Chứng minh ba điểm B, D, I thẳng hàng.
Giúp mình với ạ nhanh nha , có vẽ hình minh họa nhé
cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Trên tia BA lấy điểm F sao cho BF=BC. Kẻ BD là tia phân giác của góc ABC(D thuộc AC). Chứng minh rằng:
a) Tam giác ABD = tam giác EBD từ đó suy ra AD = ED
b) BD là đg trung trực của đoạn thẳng AE và AD < DC
c) Ba điểm E ,D, F thẳng hàng