Cho tam giác ABC vuông tại A(AB>AC) có đường cao AH (H thuộc BC).Trên nửa mp bờ BC chứa điểm A,vẽ nửa đường tròn(O1) đường kính BH cắt AB tại I (I khác B) và nửa đường tròn (O2) đường kính HC cắt AC tại K (K khác C).CM
a) Tứ giác BIKC là tứ giác nội tiếp
b) IK là tiếp tuyến chung của 2 nửa đtron (O1) và (O2)
Giúp mình với ạ,mình cảm ơn rất nhiềuuuuuu
Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn đường kính AH cắt AB, AC lầnlượt ở E, F.a. Chứng minh AEHF là hình chữ nhật.b. Chứng minh BEFC nội tiếp và AE. AB = AF. ACc. Đường thẳng qua A vuông góc với EF cắt BC tại I. CMR: I là trung điểm của BC.d. Chứng minh nếu diện tích tam giác ABC bằng 2 lần diện tích của tứ giác AEHF thì tam giác ABCvuông cân.
Mình lm đc câu a,b r giúp mình câu c,d với
Cho tam giác ABC nhọn AB <AC , đường cao AH .M,N là hình chiếu của H trên AB,AC . MN cắt BC tại D . Trên nửa mp bờ BC chứa A vẽ nửa đường tròn đường kính CD . Qua B kẻ đường vuông góc với CD cắt nửa đường tròn tại E. Gọi O là tâm đường tròn ngoại tiếp tam giác MNE . Cm: OE vuông góc DE
Cho tam giác ABC vuông ở A có AC=5cm và đường cao AH=3cm
1,Tính độ dài CH và CB
2,đường tròn đường kính AH cắt AB và AC theo thứ tự tại E và F.Tứ giác AEHF là hình gì?Vì sao?
3,Chứng minh tứ giác BEFC nội tiếp và EF là tiếp tuyến chung của đường tròn đường kính HB và đường tròn đường kính HC.
cho tam giác abc vuông tại a kẻ đường cao ah vẽ đuòng tròn đuòng kính ah đường tròn cắt ab tại e cắt ac tại F , gọi m là giao điểm của CE và BF . So sánh diện tích tứ giác AEMF và diện tích tam giác BMC
Cho tam giác ABC vuông tại A, biết AB > AC, trên AB lấy điểm K ( K≠A và B). Vẽ đường tròn tâm O đường kính KB. Kẻ tia CK cắt đường tâm (O) tại H. BH cắt CA tại I a) chứng minh tứ giác AIHK và BHAC nội tiếp b) chứng minh IK vuông góc BC c) chứng minh IB.IH = IA.IC
Cho Tg ABC vuông tại A (AB < AC) đ.cao AH. Trên nửa mp bờ BC chứa điểm A vẽ nửa đtr đk HB cắt AC tại E, vẽ nửa đtr đk HC cắt AC tại F. Cm: BEFC nội tiếp đtr
Cho ∆ABC có 3 góc nhọn (AB < AC) nội tiếp trong đường tròn (O) , hai đường cao BF và CE cắt nhau tại H
a/ Chứng minh 4 điểm B, E, F,C cùng nằm trên một đường tròn . Xác định tâm I của đường tròn đó
b/ Tia AH cắt (O) tại M và vẽ đường kính AD của đường tròn (O) . Chứng minh tứ giác BCDM là hình thang cân
c/ Chứng minh H, I, D thẳng hàng
d/ AD cắt EF tại K . Chứng minh AD vuông EF
1) cho tam giác ABC cân tại A , I là tâm đường tròn nội tiếp K là tâm đường tròn bàng tiếp góc A ,O là trung điểm của IK
cm 4 điểm B,I,C,K cùng thuộc 1 đường tron tam O
2) cho tam giác BC vuông ở A (AB>AC), đường cao AH .trên nửa mặt phẳng bờ BC chứa điểm A, VẼ NỬA ĐƯỜNG TRÒN CÓ DUONG KÍNH BH cat AB tại E , nửa đường tròn đường kính HC cắt AC tại S
CM tứ giác AFHE là hình chữ nhật
cm tứ giác BEFC nội tiếp