b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=3^2+4^2=25\)
hay BC=5(cm)
Ta có: ΔHBA\(\sim\)ΔABC(cmt)
nên \(\dfrac{BA}{BC}=\dfrac{HB}{AB}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{HB}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}HB=\dfrac{9}{5}=1.8\left(cm\right)\\AH=\dfrac{12}{5}=2.4\left(cm\right)\end{matrix}\right.\)
Vậy: BC=5cm; AH=2,4cm; HB=1,8cm
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
67784776866666687677/887477755469592055265696565521656>895888/75657775856366
56666874066666666685862/85664888/6676788656