Cho tam giác ABC vuông ở A . Trên cạnh BC lấy điểm D sao cho BD = BA.Gọi H là trung điểm của AD . Tia BH cắt AC ở E.Trên tia đối của tia AB lấy điểm K sao cho HK = HB . Chứng minh KD vuông góc với AC
Cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Kẻ BH vuông góc với AD,CK vuông góc với AE{H thuộc AD,K thuộc AE}.Hai đường thẳng HB và KC cắt nhau tại O.Chứng minh rằng a.tam giác ABD=tam giác ACE b.tam giác ADE cân c.tam giác DHB=tam giác EKC d.tam giác BOC cân e.OA là tia phân giác của góc BOC
Cho tam giác ABC có AB < AC . Gọi M là trung điểm cạnh BC. Kẻ BH vuông góc với AM .Trên tia đối tia đối AM lấy điểm D sao cho AD = 2MH. Chứng minh rằng BD = AC.
Cho ∆ABC vuông tại A(AB<AC). Trên cạnh BC lấy điểm D sao cho BD=BA. Tia phân giác của góc B cắt AC tại E.
a) Chứng minh: ∆ABE = ∆DBE
b) Trên tia đối của tia AB lấy điển F sao cho BF = BC, BE cắt CF tại G, chứng minh BG vuông góc CF
c) Chứng minh: D, E, F thẳng hàng.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD = MB
a) Chứng minh: AD = BC
b) Chứng minh CD vuông góc với AC
c) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh: △ABM = △CNM
Mn làm giúp mk nhé mk cần gấp lắm
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC, trên tia đối của tia MB lấy điểm D sao cho MD = MB a) Chứng minh: AD = BC b) Chứng minh CD vuông góc với AC c) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh: △ABM = △CNM
cho tam giác ABC, AD là phân giác của góc A( D thuộc BC). trên AC lấy điểm M sao cho AM=AB a) chứng minh: tam giác ABD = tam giác AMD b) chứng minh : AD vuông góc với BM c) trên tia đối của tia BA lấy điểm K sao cho BK=MC. chứng minh M,D,K thẳng hàng d) chứng minh: BM//KC
giúp mình với :))
Cho tam giác ABC có AB = AC. Gọi H là trung điểm của cạnh BC.
a) Chứng minh rằng AH là tia phân giác của góc BAC và AH vuông góc với BC.
b) Trên tia đối của tia AH lấy điểm K sao cho HK = HA. Chứng minh rằng CK song song với AB.
CHO EM XIN CẢ HÌNH NHÉ !