Xét ΔBCD có:
DE là đường cao ứng với cạnh BC(HE⊥BC, D∈HE)
BA là đường cao ứng với cạnh CD(BA⊥CA, D∈AC)
DE\(\cap\)BA={H}
Do đó: H là trọng tâm của ΔBCD
hay CH⊥BD(đpcm)
Xét ΔBCD có:
DE là đường cao ứng với cạnh BC(HE⊥BC, D∈HE)
BA là đường cao ứng với cạnh CD(BA⊥CA, D∈AC)
DE\(\cap\)BA={H}
Do đó: H là trọng tâm của ΔBCD
hay CH⊥BD(đpcm)
Câu 3: (4,0 điểm) Cho tam giác đều ABC, đường trung tuyến AM . Trên tia đối
tia CB lấy điểm D sao cho CD = CB. Vẽ CH L AD (He 4D)
a) Chứng minh : H là trung điểm của AD
b) Chứng minh: AABD vuông tại A.
c) Tia đối tia CH và tia AM cắt nhau tại P. Chứng minh: Điểm C là trọng tâm
của tam giác APD.
d) Biết AB = 10 cm . Tính AM (ghi kết quả đúng không làm tròn số )
tam giác ABC vuông tại A trên cạnh AC lấy D bất kỳ.Qua D kẻ đường thẳng vuông góc với BC tại E: từ C kẻ đường thẳng vuông góc với BD tại F: chứng minh AB,CF,DE cùng đi qua 1 điểm
Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC ?
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân c) Cho BD cắt FC tại N, trên tia đối NB lấy M sao cho NM=ND. CM: FM // CD. d) Tính chu vi tam giác ABC , biết AB/AC= 3/4 ; BC=15 cm CẦN GẤP :)
Cho tam giác ABC vuông tại A . Kẻ tia phân giác BD của góc B ( D thuộc AC ) . Qua D kẻ DE vuông góc BC tại E . a) CM AD = DE . b) Tia ED cắt Tia BA tại F , CM DF = DC . c) CM tam giác AFC cân .
cho tam giác ABC vuông cân tại A .Trên cạnh AB lấy điểm D ,trên tia đối của tia AC lấy điểm E sao cho AD=AE .CMR ED vuông với BC
Cho ABC vuông tại A có ( AB < AC ) , từ A vẽ AH vuông góc với BC tại H ( HE BC ) , trên tỉa AH lấy điểm D sao cho AH = HD . a ) Cm : AABH = ADBH b ) Cm : AACD cân c ) Lấy điểm E thuộc đoạn thẳng HC sao cho BH = HE , DE cắt AC tại I. Cm : IC < EC
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân
Nhờ mọi người vẽ hình giúp em vs ạ! Ko cần giải đâu