Cho tam giác ABC cân ở A ( AB > BC ) , gọi M là trung điểm của AC . Kẻ đường thẳng vuông góc với AC tại M cắt BC tại N
1. Chứng minh \(\widehat{NAC}=\widehat{ACB}\)
2. Trên tia đối của tia AN lấy điểm P sao cho BN = AP . Chứng minh AN = PC
3. Gọi H , K lần lượt là trung điểm của BC và NP . Chứng minh ba đường thẳng MN , AH , CK đồng quy
Giúp mk câu 3 thôi nha
Cho \(\Delta ABC\) vuông tại A . Kẻ AH vuông góc với BC ( \(H\in BC\) ) . Tia phân giác của các góc \(\widehat{HAC}\) và \(\widehat{HAB}\) lần lượt cắt BC ở D , E . Tính độ dài đoạn thẳng DE biết AB = 5cm ; AC = 12cm
Cho \(\Delta ABC\) cân tại B , có \(\widehat{ABC}=80^o\) . Lấy điểm I nằm trong tam giác sao cho \(\widehat{IAC}=10^o\) và \(\widehat{ICA}=30^o\) . Tính số đo \(\widehat{AIB}\) .
Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
Cho tam giác ABC, góc A = 90o , AB<AC. Trên cạnh AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB sao cho AE=AC
a) CMR: DE\(\perp\) BC
b) Biết \(4\widehat{B}=5\widehat{C}\) . Tính số đo góc AED ?
Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____
Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____
Cho tam giác MNP biết 5\(\widehat{M}\) = 3\(\widehat{N}\); 7\(\widehat{M}\) - 4\(\widehat{N}\) = 150. Số đo góc \(\widehat{P}\) là ____