Cho tam giác abc có trung tuyến am mờ gọi o là trung điểm của am. qua o vẽ một đường thẳng bất kỳ các hai cạnh ab, ac. gọi a', b', c' là hình chiếu lên đường thẳng qua o của a, b, c. Cm BB'+ CC'= AA'
cho tứ giác ABCD có I là trung điểm của đoạn thẳng nối trung điểm 2 đường chéo. gọi d là đường thẳng không cắt cạnh nào của tứ giác. gọi a',b',c',d',i' là hình chiếu của a, b, c, d, i lêm d. chứng minh aa' + bb' + cc' + dd' = 4 ii'
Cho tứ giác ABCD và 1 đường thẳng d không đi qua miền trong tứ giác. Gọi E và F lần lượt là trung điểm của Ac và BD. Gọi I là trung điểm của EF. Gọi A'; B'; C'; D'; I' lầ lượt là hình chiếu vuông góc của A; B; C; D; I trên đường thẳng d.
CMR: AA' + BB' + CC' + DD' = 4.II'
Tứ giác ABCD, A';B';C';D' là trọng tâm của các tam giác BCD, tam giác ACD, tam giác ABD, tam giác ABC. Chứng minh 4 đường thẳng AA';BB';CC';DD' đồng quy.
Bài 1:Cho tứ giác ABCD.Gọi A',B',C',D' theo thứ tự là trọng tâm các tam giác BCD,ACD,ABD,ABC.Chứng minh rằng:4 đường thẳng AA',BB',CC',DD' gặp nhau tại một điểm.
Bài 2:Cho tứ giác ABCD.Hai cạnh AB,CD kéo dài cắt nhau tại E.Hai cạnh BC,AD kéo dài cắt nhau tại F.Tính góc tạo bởi 2 tia phân giác E và F theo các góc trong của tứ giác ABCD.
Bài 1 : Cho hình bình hành ABCD có M là điểm bất kì trên cạnh AD. Tia BM cắt dường thẳng CD tại N. từ M kẻ đường thẳng song song với CD cắt BD tại E.
Chứng minh rằng: \(\frac{1}{ME}=\frac{1}{CD}+\frac{1}{DN}\)
Bài 2: Cho M là điểm bất kì trong tam giác ABC. Các đường thẳng AM, BM, CM lần lượt các cạnh BC, AC, AB tại A', B', C'
chứng minh rằng: \(\frac{AM}{AA'}+\frac{BM}{BB'}+\frac{CM}{CC'}=2\)
Cho hình bình hành ABCD. Qua C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành. Gọi AA', BB', DD' là các đườngvuông góc kẻ từ A, B, D đến đường thẳng xy. Chứng minh rằng AA'=BB'+DD'. (giải bài này theo 2 cách)
Cho tam giác ABC . Gọi I là giao điểm của các đường phân giác trong của các góc của tam giác . từ I kẻ IM vuông góc AB , IN vuông góc với BC , IK vuông góc với AC . Qua A kẻ đường thẳng d1 song song MN , d1 cắt đường thẳng NK tại E . Qua a kẻ đường thẳng d2 cắt MN tại D . Đường thẳng ED cắt AC , AB lần lượt tại B và Q . CHỨNG MINH P, Q là đường trung bình của tam giác ABC
giúp đỡ nha mọi người
Cho tam giác ABC nhọn, về phía ngoài vẽ các hình vuông: ABDE, ACFG. Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm A' sao cho M là trung điểm của AA'.
a) Chứng minh AA'=EG
b) AM cắt EG tại N. Chứng minh NA vuông góc với GE
c) Từ G và E kẻ các đường thẳng // với AE và AG. Chúng cắt nhau tại I. Vẽ đường cao AH của tam giác ABC.
Chứng minh: I,A,H thẳng hàng
Chứng mminh CI=BF
d) Chứng minh CD,BF,AH đồng quy