Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC cân tại A , có đường ccao AH . Gọi M là trung điểm của AB , E là điểm đối xứng với H qua M
a ) Chứng minh tứ giác AHBE là hình chữ nhật
b Gọi N là trung điểm của AH . Chứng minh E , N , C thẳng hàng
c ) Cho AH = 8cm , BC =12 cm . Tính diện tích tam giác AMH
d ) Trên tia đối của tia HA lấy điểm F . Kẻ \(HK\perp FC\left(K\in FC\right)\). Gọi I , Q lần luwowtj là trung điểm của H K cà KC . CM : BK vuông góc với FI
Cho tam giác ABC vuông tại A. Gọi I là trung điểm BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N
a) Tứ giác AMIN là hình gì? Vì sao?
b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ADCI là hình thoi.
c) Đường thẳng BN cắt DC tại K. Chứng minh: \(\dfrac{DK}{DC}=\dfrac{1}{3}\)
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Gọi D, E lần lượt là hình chiếu của H trên AB, AC và O, M, N lần lượt là trung điểm của AH, BH, CH.
a) CM: DM song song với EN và BH.AN=BO.AH
b) Gọi I là trực tâm của tam giác AMN. CM: Diện tích tứ giác BMIO gấp 3 lần diện tích tam giác MHI.
c) Giả sử khoảng cách từ điểm A đến cạnh BC không đổi thì tam giác ABC phải thỏa mãn điều kiện gì để diện tích tam giác AMN nhỏ nhất?
Cho tam giác ABC cân tại A, đường cao AD. Gọi M là trung điểm của AB. E là điểm đối xứng với D qua M.
a) CM: tứ giác ADBE là hình chữ nhật
b) TỨ giác ACDE là hình gì? CHứng minh?
c) Lấy điểm K sao cho B là trung điểm của AK. CM: CK=2CM
cho tam giác nhọn ABC, các đường cao AD và BE cắt nhau tại H. Vẽ các đường trung trực OM và ON của các cạnh BC, CA (O là giao điểm của hai đường trung trực, M và N lần lượt là trung điểm của các cạnh BC và CA). Gọi G là trọng tâm của tam giác ABC. Tính tỉ số các diện tích của hai tam giác AHG và AOG
Cho tam giác ABC đều, G là trọng tâm của tam giác . Gọi M là 1 điểm bất kỳ thuộc BC, I là trung điểm của AM. Kẻ AH vuông góc với BC. Gọi D và E lần lượt là hình chiếu của MN trên AB và AC
a) Tứ giác DIEH là hình gi? Vì sao?
b) Chứng minh: IH, DE, MG đồng quy