Xét ΔACD có
CB là đường trung tuyến
CM=2/3CB
Do đó:M là trọng tâm
=>DM đi qua trung điểm của AC
Xét ΔACD có
CB là đường trung tuyến
CM=2/3CB
Do đó:M là trọng tâm
=>DM đi qua trung điểm của AC
Cho tam giác ABC. Trên tia đối của tia BA lấy điểm D sao cho BD = BA. Trên cạnh BC lấy điểm E sao cho BE = 1/3 BC. Gọi K là giao điểm của AE và CD. Chứng minh rằng
a)DK = KC.
b) BC + AK > \(\dfrac{3}{2}\)AC
Cho tam giác ABC có M,N lần lượt là trung điểm của cạnh AB và AC. Trên tia đối của tia NB lấy điểm D sao cho ND=NB. Trên tia đối của tia MC lấy điểm E sao cho ME=MC. Chứng minh
A) AD= BC
b) góc nhọn AE// BC
c) A là trung điểm của DE
Cho tam giác ABC nhọn có AB<AC.Kể tia phân giác AD của góc BAC ( D thuộc BC).Trên cạnh AC lấy điểm E sao cho AE =AB, trên tia AB lấy điểm F sao cho AF=AC
A) Chứng minh tam giác BDF= tam giác EDC.
B)Chứng minh ba điểm F,D,E thẳng hàng
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AB=AD. Trên cạnh AC lấy điểm E sao cho AE=1/2 AC
a) Chứng minh: E là trọng tâm của tam giác BCD
b) Gọi M là trung điểm của DC. Chứng minh: 3 điểm B;M;E thẳng hàng
Cho tam giác ABC. Trên cạnh BC lấy điểm M sao cho BM bằng 2/3 BC. Trên tia đối của tia CA lấy điểm A' Sao cho CA' bằng CA. Tia AM cắt BA tại N chứng minh rằng
N là trung điểm của đoạn thẳng BA'
Cho tam giác ABC. Trên tia đối của tia BA lấy điểm D sao cho BD = BA. Trên cạnh BC lấy điểm E sao cho \(BE=\dfrac{1}{3}BC\). Gọi K là giao điểm của AE và CD.
Chứng minh rằng DK = KC
Cho ABC vuông tại A có AB=8cm;AC=6cm;
a.Tính BC?
b.Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy điểm D sao cho AD=AB chứng minh:ΔBEC=ΔDEC
c.Chứng minh DE đi qua trung điểm cạnh BC
Cho △ABC vuông tại A, AB = 6cm, AC = 8cm.
a) Tính BC
b) Đường thẳng đi qua trung điểm I của BC và vuông góc với BC cắt AC tại D. Chứng minh \(\widehat{CBD}\) = \(\widehat{DCB}\)
c) Trên tia đối của tia DB lấy điểm E sao cho DE = DC. Chứng minh △BCE vuông
Bài 5: Cho tam giác ABC có ba góc nhọn. Ba đường trung tuyến AD, BE, CF cắt nhau tại G. Trên tia đối của tia DA lấy điểm M sao cho DG = DM. Trên tia đối của tia EB lấy điểm N sao cho EG = EN, trên tia đối của tia FC lấy điểm P sao cho FG = FP. a) Chứng minh CM // BE. b) Gọi I là trung điểm BG. Chứng minh P, I, M thẳng hàng. c) Gọi K là giao của MN và CG. Chứng minh K là trung điểm MN và GC. d) EF = IK và EF//IK. e) Chứng minh G là trọng tâm ∆MNP. f) Chứng minh PN // BC, PN = PC. g) Chứng minh ∆ABC = ∆MNP. h) Đường thẳng PE cắt BC tại H. Chứng minh BC = 1/2 CH. i) Chứng minh S GDE = 1/2 S GDC= 1/3 S EDC= 1/4 S GAB =1/6 S ABE= 1 S ABDE