cậu giải được bài này chưa cho tớ hỏi với?
cậu giải được bài này chưa cho tớ hỏi với?
Cho tam giác ABC. Trên cạnh BC lấy điểm D sao cho CD=1/3BC. Từ B và C vẽ đường thẳng BE và CF vuông góc với đường thẳng AD. Chứng minh DF=1/2DE.
P/s: Ko cần vẽ hình đâu =))
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt BC tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt BC tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Cho tam giác ABC có AB=AC. D là trung điểm của BC. E là trung điểm của AD. Qua E vẽ đường thẳng vuông góc với AD cắt AB tại M. CMR:
a, Tam giác ABD = Tam giác ACD.
b, AD vuông góc với BC.
c, Tam giác AME = Tam giác DME
d, Trên nửa mặt phẳng bờ AD có chứa điểm B, vẽ tia Ax song song với BC. Trên tia Ax lấy điểm H sao cho AH = BD. Cm ba điểm D,M,H thẳng hàng.
Vẽ hình và ghi cả giả thiết, kết luận và làm bài chi tiết giúp mk nha!!!
Bài 1: cho tam giác ABC có 3 góc đều nhọn , đường cao AH vuông góc với BC tại H. Trên tia đối của tia HA lấy điểm D sao cho HA=HD.
a/Chứng minh BC và CB lần lượt là các tia phân giác của các góc ABD và ACD.
b/Chứng minh CA= CD và BD=BA
C/cho góc ACB= 45o . Tính góc ADC
D/ Đường cao AH có phải thêm điều kiện gì thì AB//CD
Bài 2: cho tam giác ABC có góc A= 90o . đường thẳng AH vuông góc với BC. Trên đường vuông góc với BC lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD
a/ chứng minh ΔAHD=ΔDBH
b/ Hai đường thẳng AB và DH có song song không? vì sao?
c/Tính góc ACB biết góc BAH=35o
Bài 3: Cho tam giác ABC với AB=AC. Lấy I là trung điểm BC. Trên tia BC lấy điểm N, trên tia CB lấy điểm M sao cho CN=BM
a/ chứng minh ΔABI=ΔACI và AI là tia phân giác góc BAC
b/ chứng minh AM=AN
c/ chứng minh AI vuông góc với BC
Bài 4: Cho góc xOy nhọn, có Ot là Tia phân giác . Lấy điểm A trên Ox, điểm B trên Oy sao cho AH=BD
a/Chứng Minh: ΔAOM=ΔBOM
b/chứng minh:AM=MB
c/ lấy diểm H trên tia Ot. Qua H vẽ đường thẳng song song với AB, dường thẳng này cắt Ox tại C, Cắt Oy tại D.Chứng minh:OH vuông góc với CD
Bài 5:Cho góc nhọn xOy. Trên tia Ox lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB. trên tia Ax lấy điểm c, trên tia By lấy điểm D sao cho AC=BD
a/ chứng minh : AD=BC
b/ Gọi E là Giao điểm ADvaf BC. Chứng minh :ΔEAC=ΔEBD
c/chứng minh: OE là phân giác của xOy
Bài 6: ChoΔABC có AB=AC. gọi D là trung điểm của BC. chứng minh rằng
a)ΔADB=ΔADC
b) AD vuông góc với BC
Cho tam giác ABC . trên cạnh AB lấy điểm D và E sao cho AD = BE. Qua D và E , vẽ các đường thẳng song song với BC, chúng cắt AC theo thứ tự ở M và N. chứng minh rằng DM + EN = BC
( Gợi ý : Qua N, kẻ đường thẳng song song với AB)
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)