Cho tam giác ABC, biết rằng tồn tại các điểm M và N lần lượt trên các cạnh AB và BC sao cho \(\dfrac{2BM}{AM}=\dfrac{BN}{CN}\) và góc BNM = góc ANC. Chứng minh tam giác ABC vuông cân
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
cho tam giác abc vuông tại a ( ab < ac ) lấy điểm i nằm trên ab kẻ bd vuông góc ci tại d. a) chứng minh tam giác aic đồng dạng tam giác dib. b) chứng minh góc abc = góc adc. c) giả sử ic là phân giác của tam giác abc. chứng minh da = db
cho tam giác ABC,từ B kẻ tia Bx cắt AC tại M. sao cho góc ABM = góc ACB. chứng minh a) tam giác ABM đồng dạng với tam giác ACB. b)tính AB biết AM=2 cm,CM=2,5 cm
Cho tam giác ABC vuông tại B ( BA < BC ). Trên cạnh BC lấy điểm M sao cho BA= BM. Từ M kẻ MD vuông góc với AC tại D. MD cắt đường AB tại N. AM cắt NC tại E
1. Chứng minh đồng dạng từ đó suy ra CD.CA = CM.CB
2. Chứng minh đồng dạng
3. Chứng minh vuông cân
4. Chứng minh suy ra BM là phân giác của
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90
Cho tam giác ABC vuông tại A. AB=3cm; AC=4cm. Vẽ AH.
a) chứng minh tam giác HBA đồng dạng tam giác ABC.
b) tính BC, AH, BH.
c) tia phân giác của góc B cắt AC và Ah theo thứ tự M và N. Kẻ IH song song với BN (I thuộc AC). Chứng minh AN2=NI.NC.
Help meeee câu c) với
cho hình chữ nhật ABCD. AB=30cm, AD=40cm. Trên AD lấy điểm F sao cho BF=BC, đường trung trực của CF cates DC tại E. EF cắt AB tại P a) Chứng minh tam giác PAF đồng dạng tam giác FAB b) Tính độ dài PB c) Chứng minh góc CPB = góc DBC d) Chứng minh PC_|_BD