Cho tam giác ABC. Ở phía ngoài tam giác, vẽ các tam giác vuông cân tại A là ABD,ACE. Vẽ hình bình hành ADIE. Chứng minh rằng:
a) IA=BC b) IA vuông góc BC
Cho tam giác ABC vuông cân tại A, vẽ về phía ngoài tam giác ABC tam giác BCD vuông cân tại B. Gọi N là điểm bất kỳ trên cạnh BD. Trung trực của CN cắt AB tại M. Chứng minh tam giác CMN là tam giác vuông cân.
Cho hình bình hành ABCD có \(\widehat{A}=\alpha>90^0\). Ở phía ngoài hình bình hành vẽ các tứ giác đều ADF, ABE
a) Tính \(\widehat{EAF}\)
b) Chứng minh rằng tam giác CEF là tam giác đều
Cho \(\Delta ABC\). Vẽ ở ngoài tam giác các tam giác vuông cân tại A là ABD, ACE. Vẽ hình bình hành ADIE. Chứng minh:
a) AI = BC
b) AI // BC
cho tam giác ABC cân ở A có điểm M trên cạnh BC. kẻ MD // AC và ME // AB(D thuộc AB, E thuộc AC .
a, chứng minh ADME là hình bình hành.(đã làm)
b, tam giác EMC là tam giác gì?
c, so sánh MD+ME với AC.
Cho tam giác ABC (AB < AC), vẽ E, F, G lần lượt là trung điểm AB, AC, BC.
a/ Chứng minh tứ giác BEFC là hình thang.
b/ Vẽ AH vuông góc BC (H thuộc BC). Chứng minh tứ giác EFGH là hình thang cân.
Cho tam giác ABC từ một điểm E trên cạnh AC vẽ đường song song với BC cắt AB tại F và đường thẳng song song với AB cắt BC tại D. Giả sử AE=BF a, Chứng minh tam giác AED cân b, Chứng minh AD là phân giác góc A
tam giác abc. về phía ngoài của tam giác dựng tam giác đều ACE TRên nửa mặt phẳng bờ AB chứa C vẽ tam giác đều ABD H,I,K lần lượt là TĐ AB AE CD CMR HIK đều
cho tam giác ABC vuông cân tại A. Trên đoạn thằng AB lấy điểm E, trên tia đối của tia CA lấy điểm F sao cho BE=CF. Vẽ hình bình hành BEFD. Gọi I là giao điểm của EF và BC. Qua E kẻ đường thẳng vuông góc với Ab cắt BI tại K
a. cmr tứ giác EKFC là hình bình hành
b. qua I kẻ đường thẳng vuông góc với AF cắt BD tại M. cmr: AI=BM
c. cmr C đối xứng với D qua MF