cho đường tròn tâm O đường kính AB.vẽ hai dây AM và BN song song với nhau sao cho sđ BM<90 độ .vẽ dây MD song song với AB.dây DN cắt AB tại E.từ E vẽ một đường thẳng song song với AM cắt đường thẳng DM tại C. chứng minh rằng:BC là tiếp tuyến cuae đường tròn (O)
cho tam giác ABC nội tiếp đường tròn tâm O . tia phận giác của các góc A , B , C cắt nhau tại I và cắt đường tròn tại các điểm D , E , F
a, CI vuông góc với DE
b, DI = DB = DC
c , gọi M là giao AC và DE . CMR IM // BC
d, CMR : A là tâm đường tròn bàn tiếp tam giác ADC
Cho đường tròn (O) đường kính AB. Vẽ 2 dây AM và BN song song sao cho sđ cung BM<90 độ. Vẽ dây MD song song với AB. Dây DN cắt AB tại F. Từ R vẽ 1 đường thẳng song song với AM cắt DM tại C. Chứng minh:
a, AB vuông góc DN
b, BC là tiếp tuyến của (O)
Cho đường tròn (O; R). Qua điểm A thuộc đường tròn, kẻ tiếp tuyến Ax, trên đó lấy điểm B sao cho \(OB=\sqrt{2}R\), OB cắt đường tròn (O) ở C.
a) Tính số đo góc ở tâm tạo bởi hai bán kính OA, OC;
b) Tính số đo các cung AC của đường tròn (O).
Cho tam giác ABC. Trên tia đối của toa AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK với BC và BD. \(\left(H\in BC,K\in BD\right).\)
a) Chứng minh rằng OH > OK.
b) So sánh hai cung nhỏ BD và BC.
Cho tam giác ABC có \(AB > AC. \) Trên cạnh AB lấy một điểm D sao cho AD = AC. Vẽ đường tròn tâm O ngoại tiếp tam giác DBC. Từ O lần lượt hạ các đường vuông góc OH, OK xuống BC (\(H\in BC,K\in BD\))
a) Chứng minh rằng OH <OK
b) So sánh hai cung nhỏ BD và BC
Cho đường tròn (O). Gọi I là điểm chính giữa của cung AB (không phải là cung nửa đường tròn) và H là trung điểm của dây AB. Chứng minh rằng đường thẳng IH đi qua tâm O của đường tròn ?
Cho tam giác ABC có ba góc nhọn nội tiếp (O;R) đường cao AH của tam giác cắt đường tròn tâm O tại D . Từ D vẽ đường thẳng song song với BC cắt đường tròn O tại E .CM : BCED là hình thang cân
Cho nửa đường tròn tâm O đường kính AB và C là điểm chính giữa của nửa đường tròn trên các tia AB và CD lần lượt lấy các điểm M và N sao cho cung CM = cung BN Chứng minh a, AM= CN
b, M N = AC = CB