Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Quynh

Cho tam giác ABC nối tiếp (O;R).Tính độ dài các cạnh AB,AC,biết R = 3cm và khoảng cách từ O đến AB,AC lần lượt là 2√2 và \(\dfrac{\sqrt{11}}{2}\)cm

Akai Haruma
7 tháng 9 2021 lúc 0:46

Lời giải:

Kẻ $OM, ON$ lần lượt vuông góc với $AB, AC$

Vì $OAB$ là tam giác cân tại $O$ ($OA=OB=R=3$) nên đường cao $OM$ đồng thời là đường trung tuyến 

$\Rightarrow M$ là trung điểm $AB$

Áp dụng định lý Pitago:

$MB=\sqrt{OB^2-OM^2}=\sqrt{3^2-(2\sqrt{2})^2}=1$ 

$\Rightarrow AB=2MB=2$ (cm)

Tương tự:

$N$ là trung điểm $AC$

$NC=\sqrt{OC^2-ON^2}=\sqrt{3^2-(\frac{\sqrt{11}}{2})^2}=2,5$ (cm)

$AC=2NC=2.2,5=5$ (cm)

Akai Haruma
7 tháng 9 2021 lúc 0:46

Hình vẽ:


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Hoàng Ngọc Anh
Xem chi tiết
Chan
Xem chi tiết
Ánh Ngọc
Xem chi tiết
Trân Phạm
Xem chi tiết
Nguyễn Thị Diễm Phượng
Xem chi tiết