a: góc AMN=1/2*(sđ cung AN+sđ cung BC)
=1/2(sđ cung CN+sđ cung CB)
=1/2*sđ cung NB
=góc BAN
b: Xét ΔBNA và ΔBCM có
góc BNA=góc BCM
góc ABN=góc MBC
=>ΔBNA đồng dạng với ΔBCM
=>BN/BC=BA/BM
=>BN*BM=BA*BC
a: góc AMN=1/2*(sđ cung AN+sđ cung BC)
=1/2(sđ cung CN+sđ cung CB)
=1/2*sđ cung NB
=góc BAN
b: Xét ΔBNA và ΔBCM có
góc BNA=góc BCM
góc ABN=góc MBC
=>ΔBNA đồng dạng với ΔBCM
=>BN/BC=BA/BM
=>BN*BM=BA*BC
Cho tam giác ABC nội tiếp (O) . Tia phân giác góc A cắt đường tròn tại M, tia phân giác góc ngoài tại đỉnh A cắt đường tròn tại N . CM:
a) tam giác MBC cân
b) CM: O, M, N thẳng hàng
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O các đường cao AM , BN cho tam giác ABC cắt nhau tại H và cắt đường tròn lần lượt tại D và E Chứng minh A, tứ giác MHNC nội tiếp đường tròn B, CD = CE C, CB là tia phân giác của góc HCD
Bài 1: Cho ∆ABC cân tại A nội tiếp đường tròn (O). tia phân giác của góc B và góc C cắt đường tròn ở D và E
a) So sánh ∆ACE và ∆ABD
b) Gọi I là giao điểm của BD và CE. Tứ giác ADIE là hình gì? Tại sao?
Cho tam giác cân ABC (AB = AC) nội tiếp đường tròn (O). Các đường phân giác của hai góc B và C cắt nhau ở E và cắt đường tròn lần lượt ở F và D. Chứng minh rằng tứ giác EDAF là một hình thoi ?
Cho tam giác ABC cân tại A nội tiếp đường tròn (0;R) và 1 điểm M bất kì trên cung nhỏ AC (M khác A và C) . Tia Bx vuong góc với AM cắt tia CM tại D . Chúng minha, góc AMD =góc ABCb, tam giác BMD cânc, khi M thay đổi trên cung nhỏ AC thì độ lớn góc BDC hkông đổi
Cho tam giác ABC cân tại A, góc A nhọn.đường vuông góc với AB tại A cắt đường thẳng BC ở D .kẻ DF vuông góc với AC tại E.gọi M là trung điểm của BC đường thẳng AM và DE cắt nhau tại F chứng minh: Tứ giác AMED nội tiếp 1 đường tròn Giúp mik bài này với!!
Cho tam giác ABC có 3 góc nhọn nội tiếp (O) các đường cao BH,CK cắt nhai tại I cà cắt (O) tại D và E
Chứng minh rằng: cung AE = cung AD
Cho tam giác ABC ( AB < AC ) nội tiếp đường tròn tâm O. Lấy D trên cạnh BC. AD cắt cung BC ở E. Chứng minh rằng
a) góc AEC > góc AEB
b) AB . CD = AD . CE
giúp tớ với ạ