cho tam giác ABC có AM là đường trung tuyến . Gọi D là trung điểm của AM . BD cắt AC tại E . Kẻ MK //BE ( K thuộc EC) chứng minh rằng 1, K là trung điểm của CE 2, CE =2AE
Bài 1: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 2: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.
cho tam giác abc cân tại a có 2 đường trung tuyến bd và ce cắt nhau tại g. Biết bd=ce.
a) Chứng minh tam giác gbc cân
b) chứng minh dg+eg > 1/2 bc.
Cíu tớ
Cho tam giác ABC. Trên tia BA lấy điểm D sao cho A là trung điểm BD. Trên tia CB lấy điểm E sao cho B là trung điểm CE. Hai đường thẳng AC và CE cắt nhau tại I. chứng minh rằng DI=DE/3
Cho tam giác ABC có 2 đường trung tuyến BD và CE cắt nhau tại G . Gọi I và K lần lượt là trung điểm của GB và GC cm rằng: A) DE//IK và DE=IK B) tam giác GED=tam giác GKI C) GE=1/3 CE
Bài 1: Cho tam giác ABC vuông cân tại C. Trên AC, CB lấy lần lượt điểm D,E sao cho CD=CE. Từ D,C hạ vuông góc với AE. Các đường vuông góc này cắt AB thứ tự là K,L. C/m: KL=KB.
Bài 2: Cho tứ giác ABCD,M và N lần lượt là trung điểm của AB và CD, biết: AD cắt MN tại E, BC cắt MN tại F. Với điều kiện nào của tứ giác thì ABCD có: góc AEM=FEM
Bài 3: Cho tam giác ABC có 3 góc nhọn, các đường cao CH, BK. Gọi D Và E lần lượt là hình chiếu của B và C trên đường thẳng HK. C/m: DK=EH.
cho tam giác ABC với đường trung tuyến AM. Lấy D trên AC sao cho DC = 2DA. Kẻ ME//BD (E thuộc CD). BD cắt AM tại I. Chứng minh: a) AD=DE=EC
b) IM=IA
c) Sabc=2Sibc
d)BI=3DI
Cho tam giác ABC có H là trực tâm, M là trung điểm của BC. Qua H kẻ đường thẳng vuông góc với HM cắt AB và AC tại E và F, trên tia đối của tia HC lấy HD = HC. Chứng minh rằng:
1) HM // BD 2) E là trực tâm của tam giác HBD
3) DE // AC 4) EH = HF